

British Journal of Mathematics & Computer Science

20(1): 1-9, 2017; Article no.BJMCS.29238

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: faki.silas@binghamuni.edu.ng;

Empirical Performance of Internal Sorting Algorithm

Faki Ageebee Silas1*, Yusuf Musa1 and S. Akosu Joyce1

1Department of Computer Science, Faculty of Science and Technology, Bingham University,
Karu-Nasarawa State, Nigeria.

Authors’ contributions

This work was carried out in collaboration between all authors. Author FAS designed the study, wrote the

protocol and supervised the work. Authors YM and SAJ carried out all laboratories work and performed the
statistical analysis. Author YM managed the analyses of the study. Author FAS wrote the first draft of the
manuscript. Authors YM and FAS managed the literature searches and edited the manuscript. All authors

read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2017/29238
Editor(s):

(1) Dariusz Jacek Jakóbczak, Chair of Computer Science and Management in this Department, Technical University of Koszalin,
Poland.

Reviewers:
(1) Stephen Akandwanaho, University of KwaZulu-Natal, South Africa.

(2) Chengliang Wang, Chongqing University, China.
(3) Abdul-Salam Sibidoo Mubashiru, Kwame Nkrumah University of Science and Technology, Ghana.

Complete Peer review History: http://www.sciencedomain.org/review-history/17182

Received: 30th August 2016
Accepted: 26th October 2016

Published: 9th December 2016

Abstract

Internal Sorting Algorithms are used when the list of records is small enough to be maintained entirely in
primary memory for the duration of the sort, while External Sorting Algorithms are used when the list of
records is large enough to be maintained in physical memory hence a need for external/secondary storage
for the duration of the sort. Almost all operations carried out by computing devices involve sorting and
searching which employs Internal Sorting Algorithms. In this paper, we present an empirical analysis of
Internal Sorting Algorithms (bubble, insertion, quick shaker, shell and selection) using sample comprising
of list of randomly generated integer values between 100 to 50,000 samples. Using C++ time function, it
was observed that insertion sort has the best performance on small sample say between 100 to 400. But
when the sample size increases to 500, Shaker sort has better performance. Furthermore, when the sample
grows above 500 samples, shell sort outperforms all the internal sorting algorithms considered in the
study. Meanwhile, selection sort has displayed the worst performance on data samples of size 100 to
30,000. As the samples size grows to further to 50,000 and above, the performance of shaker sort and
bubble sort depreciates even below that of selection sort. And when the sample size increases further
from 1000 and above then shell sort should be considered first for sorting.

Original Research Article

Silas et al.; BJMCS, 20(1): 1-9, 2017; Article no.BJMCS.29238

2

Keywords: Internal sorting; empirical analysis; space complexity; time complexity.

1 Introduction

Sorting algorithm is an algorithm that rearranges data elements of a list in certain user defined order. Sorting
can be classified in terms of the data-size and the type of memory required for a sorting computation. When
the list of data-size is small enough to be accommodated at a time in the primary memory we refer to such
sorting algorithm as Internal Sorting Algorithm (ISA). On the order hand, when the list of data-size is large
to an extent that will require secondary memory other than primary memory are refer as external sorting [1].
ISA are faced with the limitation of memory constraint therefore, since they can only process small list
capable of running at once in the primary memory. There are three categories of ISA;

(i) Selection Sort (SS) which comprises of selection and heap sort algorithms.
(ii) Insertion Sort (IS) which comprises of insertion sort algorithm and shell sort algorithm.
(iii) Exchange Sort (ES) which comprises of bubble sort algorithm and quick sort algorithms

Internal sorting algorithms (ISAs) are very prevalent in practical and real world situations. This is because
most practical problems in computing require a specific arrangement of outputs. Most often you need to sort
data in order to normalize it, and make querying efficient. There are many sorting algorithms and some
programmers tend to develop some with the intent of getting faster algorithms [2]. The efficiency of an
algorithm is estimated in terms of execution time and the amount of memory it requires. This execution time
of an algorithm which is also known as time complexity is the amount of time required for the algorithm to
be executed. It is worthy to note that programming language used in the implementation of an algorithm and
quality of compiler does not affect time complexity of algorithms [2]. This does not rule out the challenge
faced by programmers in which ISAs to use in a particular situation because some are faster than others
under different situations. It therefore becomes necessary to evaluate ISAs to know their behavior on
different data instances. This will provide researchers with an empirical fact and also enable programmers
know the precise ISA to use in situation where primary memory is all that is needed to sort the dataset
presented for sorting. Several authors have based their study on performance of external sorting algorithm
using large data set. It is also important to know which ISA work on small data samples like telephone
number, salary of workers, age of students, matriculation number of students etc.

This study therefore, investigates and evaluate the performance of ISAs using empirical analysis not the
Asymptotic Complexity Analysis since all the algorithms are internally sorted algorithms [3]. Though, a
little discussion was done on asymptotic complexity analysis (Table 1) just to alternate the limitations of
empirical analysis which is system dependent, [4] more complexity analysis techniques are available in [5],
[6], [7]. The data sets used in the study are randomly generated integers ranging between 100 to 50,000.

2 Review of Related Literature

Over the years, Empirical analysis has become a crucial part of the study of algorithms [5]. This is because
sorting data is essential to computer program and different sorting algorithms works in different ways with
advantages and disadvantages based on data input size and other architectural parameters. [8] considered
features in the process of analyzing an algorithm empirically, these features include; Correctness of the
algorithm, work done, and space used, simplicity or clarity and optimality. Correctness of an algorithm
proves the relationship between the precondition and post conditions taking on the characteristics of the
input as expected, execute it with desired output. Amount of work done measured the efficiency of the
algorithm by comparing two or more algorithm on their performance in solving same problem. The amount
of space used is a measure of memory space required for execution of an algorithm. Being an internal sorting
algorithm where all data reside in the resource memory, this memory is affected as data increase in size.
Simplicity or clarity easily makes implementation, debugging and modifying of program while optimality
depicts the best possible algorithm that solves a particular problem [1], [9], [10], [11]. Being exposed to
different sorting techniques is a common task in programming. This makes it necessary for programmers to

Silas et al.; BJMCS, 20(1): 1-9, 2017; Article no.BJMCS.29238

3

know which algorithm best suit a particular situation. Since the study only focus on empirical evidence of
ISA, and different computers and operating systems vary widely in how they keep track of CPU time in with
ISA [12,13], we consider running the experiment on a system while taking record of CPU execution time
for systems.

Space complexity was considered in base on two kind of memory usage patterns; “in-place” sorting
algorithms that do not requires extra space to accomplish its task, therefore maintains a memorize O(1).
While “out-play” sorting algorithm requires extra space O(n) or even O(log n) [14]. A stable algorithm
preserves relative order or position for duplicate array values. E.g. Insertion, bubble and shaker algorithm
[14]. Space complexity is a measure of the amount of working storage an algorithm needs. It can also be
seen as the essential memory cells that are needed by an algorithm. This affect the performance of any
running ISA [14]. Time complexity which determines how long an algorithm is ran must be considered for
algorithm performance evaluation. Practically, the better the time complexity of an algorithm is, the faster
the algorithm will carry out his work. There is often a time-space-tradeoff involved in most practical
situation. One then, has to make a compromise to exchange computing time for memory consumption or
vice versa, depending on which algorithm one chooses and how one parameterizes it.

The study focus on empirical evidence of ISA which were tested on windows 8.1, with Intel Pentium (R),
CPU speed of 2.80GHz, 4GB RAM and 64bits OS system type.

Being exposed to different sorting techniques as a common task in programming, this makes it necessary for
programmers to know which algorithm best suit a particular situation [15]. This study only focus on
empirical evidence of empirical analysis which entails; (1) Understanding the theoretical analysis. (2)
Decide on what features are to be measured: in this study we measured Time and space complexity, stability
and adaptability. (3) What is the most appropriate hardware to run the measurement on: we used the
processor speed, internal memory size and operating system type. (4) Which is the most appropriate
implementation language: we chose C++ to implement ISAs. (5) Which is the most appropriate data
structure to use, (6) implement the algorithms for comparison, (7) implement some form of timing device.
(8) Create the input dataset necessary to produce the measurement we need. (9) Measure the performance of
the algorithm on the different input dataset created to meet the aim of the analysis. (10) interpret the result
and relate to the theoretical analysis[16,17].

It is worth knowing that, at the course of performing empirical analysis of ISA, the execution time of
implementing a given algorithm depends on the CPU processing capacity, compilation rate of the Compiler,
programming language used in the implementation, algorithm construction and implementation, memory
access time of input/output and whether the operating system is multitasking of single tasking [17]. Due to
the nature of computing device in use, the CPU processing capacity and Memory determine how fast
algorithm can be executed [18]. CPU depends heavily on the computing resources ability to process floating
point (if available) and integers. It is worth of note that the general performance of CPU depends on the
platform of the computing resources [19]. The rate of compilation of a compiler has a tremendous effect on
the performance of algorithm [20]. Different compilers and versions compile codes at different rate.
Programming language affect algorithm based on specific criteria. Example, C programming may be better
in terms of execution based on its closeness to machine language while Java is better for web application and
C# for GUI design [15]. Input/output and operating system also determine how fast an algorithm can be
executed.

3 Overall Analysis of Time and Space Complexity with Stability and
Adaptability of ISA

When comparing ISAs, there are four factors that needs to be considered, these factors include; Time
complexity analysis is an effective way of comparing algorithms through their time complexity, which
depends upon the number of comparisons made when an algorithm runs at magnitude of O(f(n)). Where n is
the number of items in the list to be sorted [4,21].

Silas et al.; BJMCS, 20(1): 1-9, 2017; Article no.BJMCS.29238

4

Table 1 shows that Quick sort has better performance in its best case (Ω(nlogn)) and average case (Θ(nlogn))
runtime compared to the rest of the ISAs. Shell sort is next with best case of Ω(nlogn). It is therefore obvious
that selection sort will not be a preferred choice over other sorting algorithms with its best case (Ω(n2)),
average case (Θ(n2)) and worst case (O(n2)) respectively. Therefore, empirical analysis would be handy to
provide a better comparability outcome.

Table 1. Time/space complexity and stability/adaptability of ISAs [4,22,23]

 Time complexity

Best Case Average
case

Worst
case

Auxiliary Space
complexity

Stability Adaptability

ISA

Insertion Sort Ω(n) Θ(n2) O(n2) O(1) Yes Yes
Quick Sort Ω(n log n) Θ(n log n) O(n2) O(n) No Yes
Selection Sort Ω(n2) Θ(n2) O(n2) O(1) No No
Bubble Sort Ω(n) Θ(n2) O(n2) O(1) Yes Yes
Shaker Sort Ω(n) Θ(n2) O(n2) O(1) Yes
Shell Sort Ω(n log n) Θ(n2) O(n2) O(1) No Yes

4 Empirical Analysis

Empirical analyses are based on executing the algorithms on a computer system rather than using asymptotic
notations. To achieve that, we run the experiment on windows 8.1, with Intel Pentium (R), CPU speed of
2.80GHz, 4GB RAM and 64 bits OS system type.

The data samples selected were inserted into an array of size from 100 to 50,000 elements. In each
implementation, “CLOCKS_PER_SEC” the function in C++ library (in the time.h) was used to estimate the
execution time of ISA as shown in Fig. 1. The C++ clock function returns a value expressed in clock ticks,
which are unit of time of a constant [13].

1. #include <time.h>
2. for(i =1; i<n; i++){
3. arr[i]= rand()%n+1; //data generator
4. }clock_t begin =clock(); //counting sorting time begins
5. //sorting code here
6. clock_t end = clock();//counting sorting time ends
7. double cpu_time_to_sort = ((double) (end – begin))/ CLOCKS_PER_SEC;

Fig. 1. The code snippet for C++ clock function

The clock_t is the Data type of the value of the numbers of clock ticks that is returned by the clock function.
The CLOCKS_PER_SEC is a macro type that holds the number of clock ticks per second measured by clock
function

Each of the algorithms was run for 100 trials and an average was calculated by dividing the sum of execution
time of trials by the number of trials. The time it takes to sort each sorting algorithm in respect to the data
was recorded and represented as shown in Table 2.

5 Experimental Results and Interpretation

Table 2 presents the outcome of the test conducted on each of the ISA with various data categories.

Silas et al.; BJMCS, 20(1): 1-9, 2017; Article no.BJMCS.29238

5

Table 2. Time comparison (sec) for ISA on sizes (100 to 50,000) of data samples

 Data sample size
100 500 1,000 1,500 5,000 10,000 30,000 50,000

ISA
s

Insertion 0.015* 0.046 0.094 0.140 0.451 0.938 3.317 6.25
Quick 0.016 0.047 0.141 0.156 0.516 0.937 2.796 5.35
Selection 0.047** 0.187** 0.312** 0.468** 1.453** 2.829** 8.484** 14.172
Bubble 0.016 0.047 0.094 0.140 0.547 1.328 6.734 15.985**
Shaker 0.016 0.048* 0.097 0.156 0.546 1.252 5.94 13.532
Shell 0.016 0.047 0.093* 0.141* 0.453* 0.906* 2.743* 4.552*

Taking a critical look at Table 2, each data sample column has its lowest (*) and highest (**) execution time
value in bold and italics. The lowest values represent best execution time and the fastest algorithm in respect
to that particular data sample size, while the highest values represent the worst execution time and the
slowest algorithm in respect to that particular data sample size. The result on Table 2 shows that Selection
sort is the slowest ISA since it has the highest value all through the data samples. But at 50,000 data sample,
bubble sort became slower than selection sort since it has the largest value. This means bubble sort
performance depreciates with increase in data sample size. On the other hand, Shell sort has the least
execution time all through the data samples making it the fastest ISA both with small and large data samples.
The result of behavior of different ISA in respect to input sample size is presented in Fig. 3.

Fig. 2. Execution time performance between ISAs over 50,000 data samples

Fig. 2 validates the fact that the performance of bubble sort, followed by shaker sort compared to selection
sort depreciates as data sample size increases from 50,000 and above. However, shell sort remains the best
choice of ISA when working with large sample size.

The relationship between the time taken for sorting and the amount of element is nonlinear as seen in Fig. 4.
Comparing the ISA, a clear variation of execution time can be seen. The performance of the entire data
sample used in the study (100, 500, 1000, 1500, 10,000, 30,000, and 50,000) for each of the ISA is shown in
Fig. 3.

The study observes that insertion sort has the best performance for small data. Therefore, Insertion sort is
much faster in computing less random numbers of small size than any of the ISA considered in the study.
However, shell sort outperforms insertion sort as the data sample increases.

0

5

10

15

20

E
x

e
cu

si
o

n
 t

im
e

 i
n

 s
e

c

Internal sorting Algorithm

Sample Size = 50000

Silas et al.; BJMCS, 20(1): 1-9, 2017; Article no.BJMCS.29238

6

Fig. 3. Comparison of ISA across data sample sizes

0

0.02

0.04

0.06

E
x

e
cu

si
o

n
 t

im
e

 i
n

 s
e

c

Internal sorting Algorithm

Sample size=100

0

0.1

0.2

E
x
e

cu
si

o
n

 t
im

e
 i

n
 s

e
c

Internal sorting Algorithm

Sample size = 500

0
0.1
0.2
0.3
0.4

E
x

e
cu

si
o

n
 t

im
e

 i
n

 s
e

c

Internal sorting Algorithm

Sample Size = 1,000

0
0.1
0.2
0.3
0.4
0.5

E
x

e
cu

si
o

n
 t

im
e

 i
n

 s
e

c

Internal sorting Algorithm

Sample Size = 1,500

0

0.5

1

1.5

2

E
x

e
cu

si
o

n
 t

im
e

 i
n

 s
e

c

Internal sorting Algorithm

Sample Size = 5,000

0

1

2

3

E
x

e
cu

si
o

n
 t

im
e

 i
n

 s
e

c

Internal sorting Algorithm

Sample Size = 10,000

Silas et al.; BJMCS, 20(1): 1-9, 2017; Article no.BJMCS.29238

7

Fig. 4. General overview of growth rate based on data size and execution time in sec of ISAs

6 Further Study

This study was carried out with a single computing device. In the future, researchers could use different
computing resources with varying computing speed to compare the effect of processor speed on these data
samples. Also, only integers were used as data sample; it is the interest of the researchers to know what will
happen to character arrays in respect to internal sorting in the future.

7 Conclusion

In this paper, we have tested six ISAs on random data sample of sizes from 100 to 50,000. We apply the six
ISA on each of the data samples sizes and compare their performance in each case. And also we have found
out best and worst case with respect to execution time. All the ISA implemented in C++ language. The
programs were designed on CodeBlocks 10.5 IDE with C++ 5.02 compiler and executed on Intel Pentium
(R) processor, and the programs running at 2.80GHz clock speed.

Insertion sort should be considered ahead of every other ISAs when data sample is small (say less than 100
data sample). But when the data sample increases from 100 to 500, shaker sort should be considered ahead
of insertion sort. And when the sample size increases further from 1000 and above then shell sort should be
the best choice for sorting.

0

2

4

6

8

10

12

14

16

18

100 500 1,000 1,500 5,000 10,000 30,000 50,000

E
x
e

cu
ti

o
n

 T
im

e
 i

n
 s

e
co

n
d

s

Data Sampe Size

Insertion

Quick

Selection

Bubble

Shaker

Shell

Silas et al.; BJMCS, 20(1): 1-9, 2017; Article no.BJMCS.29238

8

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Brassard G, Bratley P. Fundamentals of algorithmic. ed: Prentice-Hall, Inc. Pearson Education, Upper

Saddle River; 1996.

[2] Aliyu AM, Zirra P. A Comparative analysis of sorting algorithms on integer and character arrays. The

International Jornal of Engineering and Science. 2013;25-30.

[3] Cormen TH, Leiserson CE, Rivest RL. Clifford Stein. Introduction to Algorithms; 2001.

[4] Ocampo JP. An empirical comparison of the runtime of five sorting algorithms. International

Baccalaureate Extended Essay; 2008.

[5] Sedgewick R, Flajolet P. An introduction to the analysis of algorithms. Addison-Wesley; 2013.

[6] Purdom Jr PW, Brown CA. The analysis of algorithms. Holt, Rinehart & Winston; 1985.

[7] Singh NK, Chakraborty S. Smart sort: Design and analysis of a fast, Efficient and robust comparison

based internal sort algorithm. arXiv preprint arXiv:1204.5083; 2012.

[8] Baase S. Computer algorithms: Introduction to analysis and design. ed: Addison Wesley, Reading,

Massachusetts; 1988.

[9] Corman TH, Leiserson CE, Rivest Ronald L. Introduction to algorithms. The

MITelectricalengineering and computerscienceseries. ed: The MIT Pressl 1990.

[10] Neapolitan RE, Naimipour K. Foundations of algorithms. Jones & Bartlett Learning; 2010.

[11] Manber U. Introduction to algorithms: A creative approach. Addison-Wesley Longman Publishing

Co., Inc.; 1989.

[12] Loosemore S. Oram A, Drepper U. The GNU C library. System & Network Applications; 1999.

[13] Loosemore S, Stallman RM, McGrath R, Oram A, Drepper U. The GNU C library reference manual.

Free Software Foundation; 2001.

[14] Karunanithi AK. A survey, Discussion and comparison of sorting algorithms. Department of

Computing Science, Umea University; 2014.

[15] Alomari Z, Halimi OE, Sivaprasad K, Pandit C. Comparative studies of six programming languages.

arXiv preprint arXiv:1504.00693; 2015.

[16] Sanders I. Empirical analysis of algorithms is easy (or is it?). Citeseer; 2001.

[17] Brunskill D, Turner J. Understanding algorithms and data structures. McGraw-Hill Companies;1996.

[18] Patterson DA, Hennessy JL, Computer organization and design: The hardware/software interface:

Newnes; 2013.

Silas et al.; BJMCS, 20(1): 1-9, 2017; Article no.BJMCS.29238

9

[19] Heineman GT, Pollice G, Selkow S. Algorithms in a nutshell: A practical guide. O'Reilly Media, Inc.;
2016.

[20] Team J. Julia Programming Language. (2013, 13/10/2016).

[21] Lafore R. Data structures and algorithms in Java; 2003.

[22] Faujdar N, Ghrera SP. Analysis and testing of sorting algorithms on a standard dataset. In

Communication Systems and Network Technologies (CSNT), 2015 Fifth International Conference.
2015;962-967.

[23] Al-Kharabsheh KS, AlTurani IM, AlTurani AMI, Zanoon NI. Review on sorting algorithms a

comparative study. International Journal of Computer Science and Security (IJCSS). 2013;7:120-126.

© 2017 Silas et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/17182

