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In this study, we proposed a malaria-hygiene mathematical model using non-linear differential equation. The 
model equations are divided into seven compartments consisting of five human compartments (Hygienic 
Susceptible, Unhygienic Susceptible, Hygienic Infected, Unhygienic Infected, and Recovered) and two vector 
compartments (Non-Disease Carrier vector and Disease carrier vector). Differential Transformation Method 
(DTM) is applied to solve the mathematical model. The solutions obtained by DTM are compared with Runge-
Kutta order 4th method (RK4). The graphical solutions illustrate similarity between DTM and RK4. It 
therefore imply that DTM can be consider a reliable alternative solution method.  
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1. INTRODUCTION 

Malaria is a parasitic disease which spread by the female Anopheles 

mosquitoes. The prevalence of malaria has continued to be a global health 

challenge with spontaneous infection rate in the last five decades, and 

resulting into huge medical restive economic hardship (Jasminka et al., 

2019; Yibeltal et al., 2018). It is transmitted from person to person through 

an infected female Anopheles mosquito bite (Azeb et al., 2018). Worldwide, 

229 million cases of malaria were recorded with 409,000 deaths in 2019. 

The sub-Sahara African regions are the endemic ancient home of malaria 

with 94% reported cases and death (World Health Organization, 2021). 

According to a study, the number of mosquitoes continues to increase due 

to the following environmental and human population related factors 

(Singh et al., 2003): 

(i) Discharge of household wastes such as garbage and trash in 

residential areas, 

(ii) Open drainage of sewage in residential areas, 

(iii) Plantations of vegetation and hedges in residential areas and in 

parks, 

(iv) Industries and transport systems producing wastes in residential 

areas, 

(v) Open water storage tanks and ponds. 

Also the presence of overgrown vegetation and stagnant water with “bola” 

activities such as unhealthy hygienic practices of sanitary in and around 

residential environment increases exponential growth of Anopheles 

mosquitoes (Mauti et al., 2015; Enebeli et al., 2019; Musoke et al., 2018). 

Thus, unhygienic environmental conditions in the habitat caused by 

human populations become responsible for the fast-growing numbers of 

mosquitoes. DTM is one of the methods used to solve different kinds of 

linear and nonlinear differential equations. It was first introduced by Zhou 

in a study about electrical circuits (Zhou, 1986). DTM constructs a semi-

analytic numerical technique that uses Taylor series for the solution of 

differential equations in the form of polynomials.  

It is possible to solve integro-differential equations, linear Fredholm 

integro-differential equation, differential equations, difference equations, 

differential difference equations, fractional differential equations, 

pantograph equations, fourth-order parabolic partial differential 

equations, volterra integral equations and quadratic riccati differential 

equations by this method (Azuaba and Akinwande, 2018; Arikoglo and 

Ozkol, 2008; Maleknejad and Kajani, 2004; Maleknejad et al., 2004; 

Ozdemir and Kaya, 2006; Arikoglo and Ozkol, 2006a; Arikoglo and Ozkol, 

2006b; Arikoglo and Ozkol, 2007; Keskin et al., 2007; Ibis, 2014; Jothika 

and Savitha, 2018; Abiodun et al., 2015). The main advantage of this 

method is that it can be applied directly to linear and nonlinear ordinary 

differential equations without linearization, discretization or 

perturbation. Some works has been done to solve model equation with 

differential transformation method (DTM); applied DTM to solve a 

deterministic model of infectious disease, the result shows a positive 

correlation between DTM and Runge-Kutta solution (Adebisi et al., 2019). 

In a study, DTM was applied to determine the approximate solution to a 

sterile insect technology model for controlling zika virus vector (Atokolo 

et al., 2021).  
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The method as applied provides fast convergence rate and was considered 

a variable alternative tool for solving non-linear and linear problem in 

science and engineering. A group researcher carried out a study to solve a 

mathematical model for dengue fever using DTM (Eguda et al., 2019). The 

work shows that DTM is a very effective tool for solving ordinary 

differential equation problems. Some researchers solved a mathematical 

model of yellow fever dynamics incorporating secondary host applying 

DTM, from the work it showed that DTM was a valid alternative solution 

method (Somma et al., 2019). With all the study carried out none has 

solved to the best of the author’s knowledge a malaria hygiene 

mathematical method using DTM. Hence this work is aimed to solve a 

malaria hygiene mathematical model. The paper is organized as follows: 

Section 2 is the model formulation, section 3 presents DTM, section 4 

includes model solution, section 5 is presents graphical solution of the 

model, in section 6 we conclude the study.  

2. MODEL FORMULATION 

In this model, the total human population denoted by 𝑁𝐻is subdivided into 

Unhygienic susceptible human population 𝑆𝑢, Hygienic Susceptible 

Human population𝑆ℎ , Unhygienic infected human population 𝐼𝑢 , hygienic 

infected human population 𝐼ℎand the Recovered Human population 𝑅ℎ. 

The mosquito population denoted by 𝑁𝑣is subdivided into susceptible 

mosquitoes 𝑆𝑣 and infected mosquitoes𝐼𝑣. Therefore, we have the 

following sub populations:  

𝑁𝐻 = 𝑆𝑢 + 𝑆ℎ + 𝐼𝑢 + 𝐼ℎ + 𝑅.                (1) 

𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣.                 (2) 
 

Let Λ𝐻 be the recruitment rate of the human population. A fraction 

(1 − 𝛼)Λ𝐻enters unhygienic susceptible human class while the remaining 

fraction 𝛼Λ𝐻 enters the hygienic susceptible human class. The unhygienic 

susceptible class is increased by the rate at which unhygienic human class 

lose immunity after recovery given as 𝜔𝑢, and reduced by the rate of 

progression to hygienic class𝜏1, the force of infection for the unhygienic 

class𝜆𝑢 and natural human death rate 𝜇𝐻. The hygienic susceptible human 

compartment is increased by the 𝜏1, the rate at which hygienic human loss 

immunity after recovery at 𝜔ℎ, while the compartment is reduced by 

natural human death rate 𝜇𝐻 and the force of infection for the hygienic 

class (1 − 𝜁)𝜆ℎ. The unhygienic infected human class 𝐼𝑢 is increased by 𝜆𝑢 

and reduced by natural human death rate 𝜇𝐻, rate of progression from 𝐼𝑢to 

 𝐼ℎ given as 𝜏2, malaria induced death for unhygienic human class 𝛿𝑢 and 

recovery for unhygienic human 𝜃𝑢. The hygienic infected class 𝐼ℎ is 

increased by (1 − 𝜁)𝜆ℎ and 𝜏2then reduced by the recovery rate for a 

hygienic human class given as 𝜃ℎ, malaria induced death for hygienic 

human class 𝛿ℎand natural death rate 𝜇𝐻. The Human recovery class 𝑅 is 

increased by 𝜃ℎ and 𝜃𝑢, then reduced by 𝜇𝐻, 𝜔ℎ and 𝜔𝑢. The susceptible 

mosquito class 𝑆𝑣 is increased by the Mosquito recruitment rate given as 

Λ𝑣, reduced by the mosquito’s death rate 𝜇𝑣, and force of infection for 

mosquito given as 𝜆𝑣. The infected mosquito class 𝐼𝑣 is increased by 𝜆𝑣 and  

𝜇𝑣. 

 

Figure 1. Model Schematic diagram 

Given the above description and definitions of variables and parameters 

in Table 1 and 2, the following are the model equations: 

𝑑𝑆𝑢

𝑑𝑡
= (1 − 𝛼)Λ𝐻 − (𝜏1 + 𝜆𝑢 + 𝜇𝐻)𝑆𝑢 + 𝜔𝑢𝑅

  

𝑑𝑆ℎ

𝑑𝑡
= 𝛼Λ𝐻 + 𝜔ℎ𝑅 + 𝜏1𝑆𝑢 − ((1 − 𝜁)𝜆ℎ + 𝜇𝐻)𝑆ℎ ,

  

𝑑𝐼𝑢

𝑑𝑡
=  𝜆𝑢𝑆𝑢 − (𝜏2 + 𝛿𝑢 + 𝜃𝑢 + 𝜇𝐻)𝐼𝑢

  

𝑑𝐼ℎ

𝑑𝑡
= (1 − 𝜁)𝜆ℎ𝑆ℎ + 𝜏2𝐼𝑢 − (𝛿ℎ + 𝜃ℎ + 𝜇𝐻)𝐼ℎ,                                                 (3) 

𝑑𝑅

𝑑𝑡
= 𝜃𝑢𝐼𝑢 + 𝜃ℎ𝐼ℎ − (𝜔𝑢 + 𝜔ℎ + 𝜇𝐻)𝑅,

  

𝑑𝑆𝑣

𝑑𝑡
= Λ𝑣 − 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝑆𝑣,

  

𝑑𝐼𝑣

𝑑𝑡
= 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝐼𝑣

  

where  

𝜆𝑢 =
𝑏1𝛽𝑣ℎ𝐼𝑣

𝑁𝐻
, 𝜆ℎ =

𝑏2𝛽𝑣ℎ𝐼𝑣

𝑁𝐻
,   𝑏1 > 𝑏2, 𝜆𝑣 =

𝑏3𝛽ℎ𝑣(𝐼𝑢+𝜌𝐼ℎ)

𝑁𝐻
, 𝛿𝑢 > 𝛿ℎ ,   𝜃ℎ > 𝜃𝑢 .(4) 

 
Table 1. Variables 

Symbols Description 

𝑆𝑢 𝑈𝑛ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝐻𝑢𝑚𝑎𝑛 

𝑆ℎ 𝐻𝑦𝑔𝑖𝑒𝑛𝑖𝑐 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝐻𝑢𝑚𝑎𝑛 

𝐼𝑢 𝑈𝑛ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝐻𝑢𝑚𝑎𝑛 

𝐼ℎ 𝐻𝑦𝑔𝑖𝑒𝑛𝑖𝑐 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝐻𝑢𝑚𝑎𝑛 

𝑅 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝐻𝑢𝑚𝑎𝑛 

𝑆𝑣 𝑁𝑜𝑛 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 

𝐼𝑣 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 

 
Table 2. Model Parameters 

Paramet

ers 
Definitions 

Λ𝐻 𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐻𝑢𝑚𝑎𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Λ𝑣 𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 

𝜏1 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑆𝑢 𝑡𝑜 𝑆ℎ 

𝜏2 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝐼𝑢 𝑡𝑜 𝐼ℎ 

𝛿𝑢 
𝑑𝑖𝑠𝑒𝑎𝑠𝑒

− 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑑𝑒𝑎𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑢𝑛ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 ℎ𝑢𝑚𝑎𝑛 𝑐𝑙𝑎𝑠𝑠 

𝛿ℎ 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 − 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑑𝑒𝑎𝑡ℎ 𝑓𝑜𝑟 ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 ℎ𝑢𝑚𝑎𝑛 𝑐𝑙𝑎𝑠𝑠 

𝑏1 𝑏𝑖𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜 𝑓𝑜𝑟 𝑢𝑛ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 ℎ𝑢𝑚𝑎𝑛 𝑐𝑙𝑎𝑠𝑠 

𝑏2 𝑏𝑖𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜 𝑓𝑜𝑟 ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 ℎ𝑢𝑚𝑎𝑛 𝑐𝑙𝑎𝑠𝑠 

𝛽𝑣ℎ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜 𝑡𝑜 ℎ𝑢𝑚𝑎𝑛 

𝛽ℎ𝑣 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 ℎ𝑢𝑚𝑎𝑛 𝑡𝑜 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 

𝜆𝑢 𝑡ℎ𝑒 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑢𝑛ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 ℎ𝑢𝑚𝑎𝑛 𝑐𝑙𝑎𝑠𝑠 

𝜆ℎ 𝑡ℎ𝑒 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 ℎ𝑢𝑚𝑎𝑛 𝑐𝑙𝑎𝑠𝑠 

𝜆𝑣 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 

𝑏3 𝑏𝑖𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 

𝜁 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 𝑐𝑙𝑎𝑠𝑠 

𝜌 𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝜃𝑢 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑓𝑜𝑟 𝑢𝑛ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 ℎ𝑢𝑚𝑎𝑛 𝑐𝑙𝑎𝑠𝑠 

𝜃ℎ 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑓𝑜𝑟 ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 ℎ𝑢𝑚𝑎𝑛 𝑐𝑙𝑎𝑠𝑠 

𝜔 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ℎ𝑢𝑚𝑎𝑛 𝑏𝑒𝑐𝑜𝑚𝑒 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 

𝛼 ℎ𝑦𝑔𝑖𝑒𝑛𝑖𝑐 𝑟𝑎𝑡𝑒 

𝜇𝐻 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 ℎ𝑢𝑚𝑎𝑛 𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 

𝜇𝑣 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 

𝑁𝐻  𝑇𝑜𝑡𝑎𝑙 𝐻𝑢𝑚𝑎𝑛 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

3. DIFFERRENTIAL TRANSFORMATION METHOD (DTM) 

In this section, the basic principle of DTM is being utilized as follows. Given 
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an arbitrary function 𝑓(𝑡) that can be expanded in Taylor series at the 

point 𝑡 = 0 as  

𝑓(𝑡) = ∑
𝑡𝑘

𝑘!

∞
𝑘=0 [

𝑑𝑘𝑓

𝑑𝑡𝑘
]

𝑡=0
                                                        (5) 

 

We define the differential transformation as  

𝐹(𝑡) =
1

𝑘!
[

𝑑𝑘𝑓

𝑑𝑡𝑘
]

𝑡=0
                                                                             (6) 

 

The inverse differential transform is  

𝑓(𝑡) = ∑ 𝑡𝑘𝐹(𝑡)∞
𝑘=0                                                                              (7) 

 

The table below consists of some properties of the DTM. Given that 𝑐(𝑥) 

and 𝑓(𝑥) are arbitrary functions with 𝐶(𝑘) and 𝐹(𝑘) as the respective 

transformation functions. 

 

Table 3. Basic Properties of DTM 

S/N        Original Functions        Transformed Functions  

1            𝑦(𝑥) = 𝑐(𝑥) ± 𝑓(𝑥)      𝑌(𝑘) = 𝐶(𝑘) ± 𝐹(𝑘) 

2            𝑦(𝑥) = 𝜌𝑐(𝑥)                𝑌(𝑘) = 𝜌𝐶(𝑘), where 𝜌 is a constant 

3            𝑦(𝑥) =
𝑑𝑐(𝑥)

𝑑𝑥
                  𝑌(𝑘) = (𝑘 + 1)𝐶(𝑘 + 1) 

4            𝑦(𝑥) =
𝑑2𝑐(𝑥)

𝑑𝑥2
                𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2)𝐶(𝑘 + 2) 

5            𝑦(𝑥) =
𝑑𝑛𝑐(𝑥)

𝑑𝑥𝑛
                𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2) … (𝑘 + 𝑛)𝐶(𝑘 + 𝑛) 

6            𝑦(𝑥) = 1                        𝑌(𝑘) = 𝛿(𝑘) 

7            𝑦(𝑥) = 𝑥                       𝑌(𝑘) = 𝛿(𝑘 − 1).  𝛿 is the Kronecker delta 

8           𝑦(𝑥) = 𝑒𝜆𝑥                    𝑌(𝑘) =
𝜆𝑘

𝑘!
 

9           𝑦(𝑥) = 𝑐(𝑥)𝑓(𝑥)          𝑌(𝑘) = ∑ 𝐹(𝑚)𝐶(𝑘 − 𝑚)∞
𝑚=0  

 

10          𝑦(𝑥) = (1 + 𝑥)𝑛          𝑌(𝑘) =
𝑛(𝑛−1)(𝑛−2)..(𝑛−𝑘+1)

𝑘!
 

4. MODEL SOLUTION 

 Here, DTM is applied to solve the model equations (3): 

Using the properties in Table 3, we obtain the following system of 
transformed equations:  

𝑆𝑢(𝑘 + 1) =

1

𝑘+1
[
(1 − 𝛼)Λ𝐻 − (𝜏1 + 𝜇𝐻)𝑆𝑢(𝑘) − 

𝑏1𝛽𝑣ℎ

𝑁𝐻
∑ 𝑆𝑢(𝑚)𝐼𝑣(𝑘 − 𝑚)𝑘

𝑚=0

+𝜔𝑢𝑅(𝑘)
]                 (8) 

𝑆ℎ(𝑘 + 1) =
1

𝑘+1
[
𝛼Λ𝐻 + 𝜔ℎ𝑅(𝑘) + 𝜏1𝑆𝑢(𝑘) − 𝜇𝐻𝑆ℎ(𝑘)

−
(1−𝜁)𝑏2𝛽𝑣ℎ

𝑁𝐻
∑ 𝑆ℎ(𝑚)𝐼𝑣(𝑘 − 𝑚)𝑘

𝑚=0
]                                       (9) 

𝐼𝑢(𝑘 + 1) =
1

𝑘+1
[

𝑏1𝛽𝑣ℎ

𝑁𝐻
∑ 𝑆𝑢(𝑚)𝐼𝑣(𝑘 − 𝑚)𝑘

𝑚=0 − (𝜏2 + 𝛿𝑢 + 𝜃𝑢 + 𝜇𝐻)𝐼𝑢(𝑘)]   

                                                                                                                  (10) 

𝐼ℎ(𝑘 + 1) =
1

𝑘+1
[

(1−𝜁)𝑏2𝛽𝑣ℎ

𝑁𝐻
∑ 𝑆ℎ(𝑚)𝐼𝑣(𝑘 − 𝑚)𝑘

𝑚=0 + 𝜏2𝐼𝑢(𝑘)

−(𝛿ℎ + 𝜃ℎ + 𝜇𝐻)𝐼ℎ(𝑘)
]            (11) 

𝑅(𝑘 + 1) =
1

𝑘+1
[𝜃𝑢𝐼𝑢(𝑘) + 𝜃ℎ𝐼ℎ(𝑘) − (𝜔𝑢 + 𝜔ℎ + 𝜇𝐻)𝑅(𝑘)]            (12) 

𝑆𝑣(𝑘 + 1) =
1

𝑘+1
[Λ𝑣 −

𝑏3𝛽ℎ𝑣

𝑁𝐻
∑ 𝑆𝑣(𝑚)(𝐼𝑢(𝑘 − 𝑚) + 𝜌𝐼ℎ(𝑘 − 𝑚))𝑘

𝑚=0 −

𝜇𝑣𝑆𝑣(𝑘)]                                                                                              (13) 

𝐼𝑣(𝑘 + 1) =
1

𝑘+1
[

𝑏3𝛽ℎ𝑣

𝑁𝐻
∑ 𝑆𝑣(𝑚)(𝐼𝑢(𝑘 − 𝑚) + 𝜌𝐼ℎ(𝑘 − 𝑚))𝑘

𝑚=0 − 𝜇𝑣𝐼𝑣(𝑘)]

                                                                                              (14) 

With initial conditions given as  

𝑆𝑢(0) = 40; 𝑆ℎ(0) = 50; 𝐼𝑢(0) = 60; 𝐼ℎ(0) = 35; 𝑅 = 40; 𝑆𝑣(0) =
25; 𝐼𝑣(0) = 20. We have the following initial values and parameters; 

𝑆𝑢(1) = 75.58826667; 𝑆𝑢(2) = −4.184918845; 𝑆𝑢(3) = 29.96909653;  

𝑆𝑢(4) = 6.952730975; 

𝑆ℎ(1) = 87.59373333; 𝑆ℎ(2) = 10.71830970; 𝑆ℎ(3) = 26.60343544; 

𝑆ℎ(4) = 8.700966496;  

𝐼𝑢(1) = −40.78426667; 𝐼𝑢(2) = 13.88464134; 𝐼𝑢(3) = −3.147393685; 

𝐼𝑢(4) = 0.5393056537; 

𝐼ℎ(1) = 22.66086667; 𝐼ℎ(2) = −12.56513789; 𝐼ℎ(3) = 3.195120115; 

𝐼ℎ(4) = −0.559047512; 

𝑅(1) = −54.96760; 𝑅(2) = 44.11645520; 𝑅(3) = −23.63798303; 

𝑅(4) = 9.42007805 

𝑆𝑣(1) = 999.9055775; 𝑆𝑣(2) = 498.1294006; 𝑆𝑣(3) = 333.1743809; 

𝑆𝑣(4) = 249.770719, 

𝐼𝑣(1) = 0.09186200; 𝐼𝑣(2) = 1.842149461; 𝐼𝑣(3) = 0.149469510; 𝐼𝑣(4)

= 0.224539509 

and are transformed as follows:  

𝑠𝑢(𝑡) = ∑ 𝑆𝑢(𝑘)𝑡𝑘

𝑘

𝑛=0

= 40 + 75.58826667𝑡 − 4.184918845𝑡2

+ 29.96909653𝑡3 

+6.952730975𝑡4 + ⋯ 

𝑠ℎ(𝑡) = ∑ 𝑆ℎ(𝑘)𝑡𝑘

𝑘

𝑛=0

= 50 + 87.59373333𝑡 + 10.71830970𝑡2

+ 26.60343544𝑡3 

+8.700966496𝑡4 + ⋯  

𝑖𝑢(𝑡) = ∑ 𝐼𝑢(𝑘)𝑡𝑘

𝑘

𝑛=0

= 60 − 40.78426667𝑡 + 13.88464134𝑡2

− 3.147393685𝑡3 

+0.5393056537𝑡4 + ⋯ 

𝑖ℎ(𝑡) = ∑ 𝐼ℎ(𝑘)𝑡𝑘

𝑘

𝑛=0

= 35 + 22.66086667𝑡 − 12.56513789𝑡2

+ 3.195120115𝑡3 

−0.559047512𝑡4 + ⋯ 

𝑟(𝑡) = ∑ 𝑅(𝑘)𝑡𝑘

𝑘

𝑛=0

= 40 − 54.96760𝑡 + 44.11645520𝑡2 − 23.63798303𝑡3 

+9.42007805𝑡4 + ⋯ 

𝑠𝑣(𝑡) = ∑ 𝑆𝑣(𝑘)𝑡𝑘

𝑘

𝑛=0

= 25 + 999.9055775𝑡 + 498.1294006𝑡2

+ 333.1743809𝑡3 

+249.770719𝑡4 + ⋯ 

𝑖𝑣(𝑡) = ∑ 𝐼𝑣(𝑘)𝑡𝑘

𝑘

𝑛=0

= 20 + 0.09186200𝑡 + 1.842149461𝑡2

+ 0.149469510𝑡3 

+0.224539509𝑡4 + ⋯ 

5. GRAPHICAL PRESENTATION OF MODEL SOLUTION 

In this section, the graphical illustration obtained from the analytical 

solution is presented using Maple software. By using the initial conditions 

and parameter values from table 4, figures (2) to (8) show the solutions 

plots by DTM and RK4. 

 

Table 4: Parameter values of Model 
Symbols Values Source 

Λ𝐻 100 (Oluwatayo, 2019) 
Λ𝑣 1000 (Bakare and Nwozo, 2017) 
𝜏1 0.25 (Assumed) 
𝜏2 0.5 (Assumed) 
𝛿𝑢 0.13 (Assumed) 
𝛿ℎ 0.06 (Assumed) 
𝑏1 0.17 (Assumed) 
𝑏2 0.1 (Assumed) 

𝛽𝑣ℎ 0.03 (Olaniyi et al., 2018) 
𝛽ℎ𝑣 0.09 (Olaniyi et al., 2018) 
𝑏3 0.12 (Olaniyi and Obabiyi, 2013) 
𝜁 0.08 (Assumed) 
𝜌 0.5 (Assumed) 
𝜃𝑢 0.05 (Assumed) 
𝜃ℎ 0.15 (Assumed) 
𝜔 0.7902 (Bakare and Nwozo, 2017) 
𝛼 0.46 (Assumed) 

𝜇𝐻 0.00004 (Oluwataya, 2019) 
𝜇𝑣 0.0000569 (Bakare and Nwozo, 2017) 
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Figure 2: Solution of Unhygienic Susceptible Individuals 

 

Figure 3: Solution of Hygienic Susceptible Individuals 

 

Figure 4: Solution of Unhygienic Infected Individuals 

 

Figure 5: Solution of Hygienic Infected Individuals 

 

Figure 6: Solution of Recovered Individuals 

 

Figure 7: Solution of Non-Disease carrier Mosquitoes 

 

Figure 8: Solution of Disease carrier Mosquitoes 

6. CONCLUSION 

In this study, we present a mathematical model to assess the effect of 

hygiene in malaria transmission and solved the system of equations using 

the DTM. Graphical illustrations were presented and compared with DTM 

result and classical Runge-Kutta order 4th method (RK4). It is shown that 

DTM is a piecewise efficient convergent, cost effective method for solving 

nonlinear differential equations in the bounded domains. The method 

gives rapidly converging series solutions and the solutions can be 

improved by expanding the series. It is observed that the series solutions 

obtained with DTM can be written in exact closed form.  
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