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Abstract 
A Mathematical model describing the transmission dynamics and control of Trypanosomiasis 
is developed and analyzed. The model involves three interacting populations; humans, 
livestock and tsetse-flies. We obtained the disease-free equilibrium state of the model and 
carried out local stability analysis using the effective reproduction number ( cR ).  
Keywords: Trypanosome, protozoa, Sleeping Sickness, hemo-lymphatic, meningo  
        encephalitic 
 
Introduction 
African Trypanosomiasis (AT) commonly called sleeping sickness is an infectious disease of 
both human beings and animals. It is a vector–borne parasitic disease caused by an 
extracellular protozoa belonging to the genus, trypanosome, species brucei. The parasites 
are transmitted to humans by tsetse fly (Glossina genus) bite which have acquired their 
infection from human beings or animals harboring the pathogenic parasite (WHO,2015). 
There are two types of Human African Trypanosomiasis (HAT); West African sleeping 
sickness (WASS) which is the chronic type caused by Trypanosoma brucei gambiense 
(T.b.g) found only in humans, and East African sleeping-sickness (EASS), the acute type 
caused by Trypanosoma brucei rhodesiense (T.b.r) found in domesticated animals as well as 
in humans. According to World Health Organization (WHO,1998), ninety-five percent (95%) 
of the trypanosomiasis cases are chronic, with the victim suffering the disease for many 
years before eventual death. Acute infection can cause death within weeks. HAT (WASS) 
clinically evolves in two stages. First or early stage-known as the hemo-lymphatic phase, 
start with painful nodules/chancre with surrounding erythema and swelling 2-3 days after 
tsetse fly bite which erupts into a red sore, then invasion of the lymphatic system and blood 
stream 2-3weeks later characterized by non-specific symptoms like irregular  bouts of fever, 
fatigue, headaches, aching muscles, increased sweating, and weight loss. (generally goes 
undiagnosed without sleeping sickness surveillance). Second or later stage-known as 
meningo-encephalitic phase is marked by involvement of the central nervous system with 
extensive neurological effects and can lead to serious sleep cycle disturbances(the disease 
earned its name from the hallmark of the 2nd stage classic symptoms, daytime slumber and 
nighttime insomnia) anxiety mood, confusion, slurred speech, paralysis, progressive mental 
deterioration, and ultimately results in death without effective treatment (Microbewiki, 
African Trypanosomiasis., WHO, 2013).  
 
During the past decades, Akinwande (1995,2005),Adamu, et al (2011), Onyebiyuwa et al 
(2010), Nannyonga et al (2010), Damian et al (2014), Jose et al (2014), Abdulrahman 
(2014), Otieno et al (2014),Rachid et al (2015) have developed mathematical models of 
infectious diseases. Considering the work of the aforementioned authors, a new 
mathematical model is develop to complement and extend on their works by incorporating 
stage progression,screening and treatment in the proposed model. 
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Model Formulation 
We formulated a model compartmentalizing the total population into nine epidemiological 
classes, with the following variables and parameters. 
hS  (t)   Susceptible humans at time t,     hI (t)     Infected humans first stage at time t, 

 mI  (t)  Infected humans second stage at time t,     hR  (t)    Recovered humans at time t  
( )vN t   Non-carrier vectors at time t,     ( )vC t    Carrier vectors at time t , 

 lS (t)   Susceptible livestock at time t,   lI (t)   Infected livestock at time t, and 
   ( )lR t   Recovered livestock at time t. where 

hΛ , vΛ and lΛ are the daily recruitment rates of human, vector and livestock respectively 
into   the  susceptible population.α , 1αη , 2αη  and 3αη  are the effective transmission rates 
of AT from vector to human, human to vector, vector to livestock and livestock to vector 
while hµ , lµ and vµ , hδ , lδ  and vδ  are the  natural and induced death rates for human, 
livestock and vector populations. hγ  is recovery rate of human due to natural healing, mτ and 

lτ are treatment rates of  infected human and infected livestock respectively. hω , lω -waning 
rate of temporal immunity for human and livestock, while pε , the efficacy of protective 
clothing, fε  efficacy of fumigation, pϕ human compliance with protective clothing and fϕ  
rate of usage of fumigation are the control strategies used. 

 
Figure1: Schematic diagram of AT transmission dynamics and control 
The mathematical equations of the model can be described by a system of ordinary 
differential equations given below; 

(1 )h v h
h h h h h

h

dS C S p p
R S

dt P

α ε ϕ
ω µ

−
= Λ + − −              (1) 

                    
     

                                                                   
(1 ) ( )h v h

h h h
h

dI C S p p
I

dt P

α ε ϕ
σ γ µ

−
= − + +                                (2)              
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( )m

h m h h m
dI

I I
dt

σ τ µ δ= − + +        (3)                                       

( )h
h h m m h h h

dR
I I R

dt
γ τ µ ω= + − +                                                     (4)            

   
1 1 2( ) ( )v h m l

v v v v v
v v v

dN I I I
N C

dt P P P

αη φαη αη
µ δ= Λ − + + − +                             (5)                                                 

                                                                                                                                                                              
1 1 2( ) ( )v h m l

v v v v
v v v

dC I I I
N C

dt P P P

αη φαη αη
µ δ= + + − +        (6)                                

( )3 1v ll
l l l l l

l

C S f fdS
R s

dt P

αη ε ϕ
ω µ

−
= Λ + − −      (7)                                                                                                                    

3 (1 ) ( )l v l
l l l l l

l

dI C S f f
I k I

dt P

αη ε ϕ
τ δ

−
= − + +                                         (8)                            

                                                                                                 
    

( )l
l l l l l

dR
I k R

dt
τ ω= − +                                                                                (9)                                    

where 
( ) ( ) ( ) ( ) ( )h h h m hP t S t I t I t R t= + + +                                                                  

( ) ( ) ( )

( ) ( ) ( ) ( )l l l l

v t N t C tv v

P t S t I t R t

P = +

= + +
                                                                     (10)        

 
   So that 

  
h

h h h h h h m
dP

P I I
dt

µ δ δ= Λ − − −                                                                               
 

l
l l l l l

dP
k P I

dt
δ= Λ − −                                                     (11) 

 
( )v

v v v v
dP

C
dt

µ δ= Λ − +                                             
In a biological region-feasible region: 

{ } 9
,, , , , , , , :h h m h v v l l l h l vS I I R N C S I R N P P P+Ω = ∈ℜ ≤ + +                              (12) 

 
It can be shown to be positively invariant with respect to the system (1) –(9) The domain is 
invalid epidemiologically as the sub population , ,, , , , , , ,h h m h v v l l lS I I R N C S I and R  are all 
non- negative and the sum of each population ( , , )h l vP P P is less than or equal to the total 
population. 
 
Model Analysis 
Existence of Disease-Free Equilibrium, 0E  
The disease –free equilibrium states are steady- state solutions where there is no disease. 
Hence, all the infected classes will be zero. The entire population comprises of susceptible 
individuals. Theorem1: A disease –free equilibrium state of the model (1) exists at the 
point 

E0=0 ( ), , , , , , , ,o o o o o o o o o
h h m h v v l l lS I I R N C S I R =

4
, 0,0,0, ,0, ,0,0h v l

h lK kµ
 Λ Λ Λ
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Proof:  
 
At the equilibrium state, the rate of change of each variable is equal to zero. i.e 

 dS dI dI dR dN dC dS dI dR 0
dt dt dt dt dt dt dt dt dt
h h m h v v l l l= = = = = = = = =

                     (13) 

Let; ( )( , , , , , , , ) , , , , , , ,h h m v v l l l h h m v v l l lS I I N C S I R S I I N C S I R∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗=
                    

 

at equilibrium state. Thus we have from system (1) –(9) 
(1 ) 0h h

h h h h h

h

C S p p
R S

P

α ε ϕ
ω µ

∗ ∗
∗

∗
−

Λ + − =
                        (14)             

     
1

(1 ) 0h h
h

h

C S p p
K I

P

α ε ϕ∗ ∗
∗

∗
−

− =
          (15)                                                                                                                             

2 0h mI K Iσ ∗ ∗− =          (16)
                                                                                                  

3 0h h m m hI I K Rγ τ∗ ∗ ∗+ − =         (17)
 

1 1 2
4( ) 0h v m v l v

v v

v v
v

I N I N I N
K N

PP P

αη φαη αη∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗
∗

Λ − + + − =

                              (18)
 

 

1 1 2
4 0h v m v l v
v

v v v

I N I N I N
K C

P P P

αη φαη αη∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗
+ + − =

                      (19) 

3 (1 ) 0v l
l l l l l

l

C S f f
R u S

P

αη ε ϕ
ω

∗ ∗
∗ ∗

∗
−

Λ + − − =
                                                 (20)                                                                                                                             

 

  3
5

(1 ) 0v l
l

l

C S f f
K I

P

αη ε ϕ∗ ∗
∗

∗
−

− =                                                      (21)                     

6 0l l lI K Rτ ∗ ∗− =                        (22) 
where  

1 2 3

4 5 6

( ), ( ), ( )
( ), ( ), ( )

h h m h h h h

v v l l l l l

K K K

K K k K k

σ τ µ τ µ δ µ ω

µ δ τ δ ω

= + + = + + = + 


= + = + + = + 
                                                                                                                      

   From (16),we have 

2

h
m

I
I

K

σ ∗
∗ =

                 (23) 
Substituting (23) into (17) yields 

* *2

2 3

h m
h h

K
R I

K K

γ τ σ +
=  
                (24) 

Substituting (24) into (14) gives 
*

* 2 3 2
*

2 3

( )
{ (1 ) }

h h h m h
h h

v h h

K K K I
S P

K K C p p P

ω γ τ σ

α ε ϕ µ
∗

∗

 Λ + +
=  

− +         (25) 
From (15) and (25) we have 
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*
* 2 3

*
1 2 3 2 1 2 3

(1 )
{ [ ( )] (1 ) }

v h
h

h h m v h h

C p p K K
I

K K K K C p p K K K P

α ε ϕ

α ω γ τ σ ε ϕ µ ∗
− Λ

=
− + − +   (26) 

Let 
1 2 3 2

1 2 3

[ ( )](1 )h h m

h h

A K K K K p p

B K K K P

α ω γ τ σ ε ϕ

µ ∗

= − + − 


=                  then, 
*

* 2 3
*

h v
h

v

K K C
I

AC B

αΛ
=

+          (27) 
substituting (27) into (24) gives 

( )2
h v

h h m

v

C
R K

AC B

α
γ τ σ

∗
∗

∗

 Λ
= +  

 +         (28) 
Also by substituting (27) into (25) gives 

* 2 3 2
*

2 3

[ ( ) ( )
( )( )

h v h h m h v
h h

v h h v

K K AC B K C
S P

K K C P AC B

ω γ τ σ α

α µ

∗ ∗
∗

∗ ∗

 Λ + + + Λ
=  

+ +       (29) 
From (21) 

* *
* 3

5

(1 )v l
l

l

C S f f
I

K P

αη ε ϕ
∗
−

=
        (30) 

subtitute (30) into (22) gives 
* *

* 3

5 6

(1 )l l v
l

l

S f f C
R

K K P

τ αη ε ϕ
∗

−
=

        (31) 
From (31), (20) becomes 

* 5 6
* *

3 5 6 3 5 6(1 ) (1 )
l l

l

v l l v l l

K K P
S

C f f K K C f f K K Pαη ε ϕ ω τ αη ε ϕ µ

∗

∗
Λ

=
− − − +    (32) 

 
 
Similarly substituting (27) into (23) gives  

3h v
m

v

K C
I

AC B

σα ∗
∗

∗
Λ

=
+               (33) 

Also (32) into (31) gives 
*

* 3 5 6
* *

5 6 5 6 3 3 5 6

(1 )
(1 ) (1 )

l v l l
l

l v l l v l l

C f f K K P
R

K K P K K C f f C f f K K P

τ αη ε ϕ

αη ε ϕ ωτ αη ε ϕ µ

∗

∗ ∗

 − Λ
=  

− − − +     (34) 
Also (32) into (30) yields 
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*
* 3 5 6

* *
5 5 6 3 3 5 6

(1 )
(1 ) (1 )

v l l
l

l v l l v l l

C f f K K P
I

K P K K C f f C f f K K P

αη ε ϕ

αη ε ϕ ωτ αη ε ϕ µ

∗

∗ ∗

 − Λ
=  

− − − +    (35 
simplifying (18) gives  

}{ 5 3 5 6 5 6
2 2

1 3 2 4 2 3 5 6

[ ( )] (1 )( )
( ) (1 )

v v l l l v l l
v v v v v

v

h v v v l l

P K P K K C f f K K P
P C B P

N
K K C K P C f f K K P

αη ωτ ε ϕ µ

α η φσ α η η ε ϕ

∗ ∗ ∗ ∗∗ ∗ ∗

∗ ∗ ∗ ∗

Λ − − +Λ + Λ
= + +

Λ + − Λ     (36) 
From (19), we have 

[

2 2
1 3 2 3 4 5 6

4
5 3 5 6 5 6

( ) 0
( ) [( ) ]
h v l l v

v

v v v l l l v l l

K K N K K P N
C K

AC B P P K P K K C K K P

α η φσ α η η

αη ω τ µ

∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗

 Λ + Λ 
+ − = 

+ − +   
Thus  
. vC

∗=0   or                             (37) 

[

2 2
1 3 2 2 3 5 6

4
5 3 5 6 5 6

( ) 0
( ) [( ) ]
h v l l v

v v l l l v l l
v

K K N K K P N
K

AC B P P K P K K C K K P

α η φσ α η η

αη ω τ µ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗

Λ + Λ
+ − =

+ − +
        (38) 

Substituting (37) into (27),(28), (32),(33),(34) we obtain 
0h m l h lI I I R R∗ ∗ ∗ ∗ ∗= = = = =

                   (39) 
0vC

∗ >
  When  

[

2 2
1 3 2 2 3 5 6

4 4 5 3 5 6 5 6

( ) 1
( ) [( ) ]
h v l l v

v v v l l l v l l

K K N K K P N

K AC B P K P K P K K C K K P

α η φσ α η η

αη ω τ µ

∗ ∗

∗ ∗
Λ + Λ

+ >
+ − +           (40) 

Thus giving two different equilibrium state, DFE state where 
0h m l vI I I C∗ ∗ ∗ ∗= = = =

   And endemic equilibrium where all the compartments are greater than zero 
Now, substituting (39) into (14),(18),and (20),we have 

h
h

h

S
µ

∗ Λ
=

,           4

v
vN

K

∗ Λ
=

,         

l
l

l

S
µ

∗ Λ
=

 
Thus a DFE state of the model exists at the point 

( )
4

, , , , , , , , ( ,0,0,0, ,0, ,0,0h v l
h h m h v v l l l

h

S I I R N C S I R
K lµ µ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ Λ Λ
= 

    

Effective Reproduction number, Rc  
We apply the next generation matrix operator as used by Diekmann and Heesterbeek 
(1990,2000), and improved upon by Driessche and Watmough (2002), we obtained the 
effective reproduction number Rc =FV-1 where F is the matrix of new infection terms and V is 
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the matrix of the transmission terms formed from the coefficient of the infected classes (Im,

 Ih ,Il,Cv ). 

1 1 2

3

0 0 (1 ) 0
0 0 0 0

0
0 0 (1 ) 0

p p

F

f f

α ε ϕ

αη φαη αη
αη ε ϕ

− 
 
 =
 
 

− 
and 

1

1 2 21

4

5

1 0 0 0

1 0 0

10 0 0

10 0 0

k

K K K
V

K

K

α

−

 
 
 
 
 
 =
 
 
 
 
 
 

            (41)

   

               

4

1
1 1 1 2

1 1 2 2 5

3

4

(1 )0 0 0

0 0 0 0

0

(1 )0 0 0

p p

K

FV

K K K K K

f f

K

α ε ϕ
λ

λ
αη φσαη φαη αη

λ

αη ε ϕ
λ

−

− − 
 

− 
 =  + −
 
 

− −
  

                             (42) 

  From which we obtained the effective reproduction number as  
2 2

1 5 2 1 2 2 3

1 2 4 5

(1 )[ ] (1 )
c

K p p K K K f f
R

K K K K

α η ε ϕ φσ α η η ε ϕ− + + −
=

 
                                                                                                        
Local Stability of Disease-free Equilibrium State                                                                                                 
Linearization of the model system (1) to (9) at any arbitrary point (E*) gives the Jacobian 
matrix (43), used in the local stability analysis. of the disease-free equilibrium state

     

1

2

3
0

1 1 4 2

1 1 4 2

3

3 5

6

0 0 0 (1 ) 0 0 0
0 0 0 0 (1 ) 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0( )
0 0 0 0 0
0 0 0 0 0 (1 ) 0
0 0 0 0 0 (1 ) 0 0
0 0 0 0 0 0 0

h h

h m

l l

l

p p

K p p

K

K

KJ E

K

f f k

f f K

K

µ ω α ε ϕ

α ε ϕ
σ
γ τ
αη φαη αη
αη φαη αη

αη ε ϕ ω

αη ε ϕ
τ

− − − 
 − − − 
 −
 

− 
 − − − −=
 

− 
 − − −
 

− − 
 − 

(43) 

 
Using elementary row-transformation gives 
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1

2
1

3 10

4 2 2

4 2

5

6

6

0 0 0 (1 ) 0 0 0
0 0 0 0 (1 ) 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
( )

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

h h

l l

p p

K p p

K
K

K H
J E

K H

H

k H

H

K

µ ω α ε ϕ
α ε ϕ

σα

αη
αη

ω

− − − 
 − − − 
 

− 
 
 −

=  
− − − 

 −
 

− − 
 − 
 − 

(44) 

 
( ) 2 2 2

2 1 1 1, , ,1 2 3 4
1 2 1 1 2 1

2 22
2 3 2 31 , ,4 3 5 6 5

1 2 4 4

Kh m
H H H K

K K K K K K

H H H H K
K K K K

α γ στ α η φσα η α η

α η η α η ηφσα η

+
= = + = −

= − = = −

   
           


     
                 

                          (45) 

The characteristic equation of the row transformed Jacobian matrix(43) is given as 
( ) 0 0 0 0 0 0

0 ( ) 0 0 0 0 0 01

0 0 ( ) 0 0 0 0 02
1

0 0 0 ( ) 0 0 0 00 3 1( )
0 0 0 0 ( ) 0 04 2 2
0 0 0 0 0 ( ) 0 04 2
0 0 0 0 0 0 ( ) 5
0 0 0 0 0 0 0 ( ) 06
0 0 0 0 0 0 0 0 ( )6

h h

K

K
K

K H
J E

K H

H

k Hl l

H

K

µ λ ω α

λ α

σα
λ

λ

λ αη

λ αη

λ ω

λ

λ

− + −

− + −

− +

− +
=

− + − −

− +

− + −

− +

− +

 
 
 
 
 
 
 
 
 
 
 
 
 

            

                                                                                       (46)      
the eigenvalues are 

1

2 1

0
0 ( ) 0

h

h hK

λ µ

λ σ γ µ

= − <

= − < = − + + <  
3 2

4 3

5 4
2

1
6 4 3

1 2

( ) 0
( ) 0
( ) 0

( ) 0

h h h

h h

v v

K

K

K

H H
K K

λ γ µ δ

λ µ ω

λ µ δ

φα η σ
λ

= − = − + + <

= − = − + <

= − = − + <

= − = − − <
 

7 0luλ = − <

 

 

2
2 3

8 6 5
4

(1 )f f
H K

K

α η η ε ϕ
λ

 −
= − = − − 

 
        (47) 
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( )9 6 0l lKλ ω µ= − = − + <
 For 

2 2
4 1 1

6
1 1 21

K

K K K

α η α η φσ
λ

  
 = − − −  

         

2 2
1 2 4 2 1 1

6
1 2

K K K K

K K

α η α η φσ
λ

 − −
⇒ = − 

 
   

2
1 2 1 2 4

6
1 2

(1 )[ ]p p K K K K

K K

α η ε ϕ φσ
λ

 − + −
=  
 
    ,

 Dividing through by 1 2 4K K K we have 

2
1 2

6 4
1 2 4

(1 )[ ] 1p p K
K

K K K

α η ε ϕ φσ
λ

 − +
= − 

 
 

, but 
2

1 2

1 2 4

(1 )[ ]
hv

p p K
R

K K K

α η ε ϕ φσ− +
=

      
6 4 ( 1)hvK Rλ = − , if hvR <1, then 6 0λ <  

                                                                                                                               

      

2
2 3

8 6 5
4

(1 )f f
H K

K

α η η ε ϕ
λ

 −
= − = − − 

 
 

,      

2
2 3

8
4 5

(1 ) 1f f

K K

α η η ε ϕ
λ

 −
⇒ = − 

 
    

by dividing through by K5, but      

2
2 3

4 5

(1 )
lv

f f
R

K K

α η η ε ϕ −
=  
 
 

( )8 1lvRλ⇒ = −

8 0, , 1lvthen if Rλ < <      
2

1 2
6

1 2 4

(1 )[ ] 0p p K

K K K

α η ε ϕ σφ
λ

− +
= < ,and 

2
2 3

8
4 5

(1 ) 0f f

K K

α η η ε ϕ
λ

−
= <

  
if Rc<1.     Simplifying gives 

2 2
1 5 2 1 2 2 3

1 2 4 5

(1 )[ ] (1 ) 1c
K p p K K K f f

R
K K K K

α η ε ϕ φσ α η η ε ϕ− + + −
= <

 
Thus, 6λ and 08 <λ  if 1cR < .Hence the disease – equilibrium, 0E  is locally asymptotically 

stable if 1cR < .. thus, determining the local stability of the system.
 Conclusion 

In this paper, a non-linear mathematical model of African Trypanosomiasis is developed,  
incorporating screening and treatment of the infectious second stage human population, the 
effective reproduction number  cR was obtained which was used to establish the conditions 
for  Local  Stability of the Disease-Free Equilibrium (DFE).The results  showed that the 
Disease-Free Equilibrium will be locally asymptotically stable if 1cR < . 
                                                                                                                                                               
Recommendations 
Sensitization of the public on the danger of trypanosomiasis and the need for its prevention, 
since no vaccine exists for immunity against the disease. Generating a vaccine for the 
disease for both human and livestock to reduce  infections, and can probably eradicate the 
disease if  more than 70% of the   population are  vaccinated with a vaccine whose efficacy 
does not wane after injection. also combined control strategies that have great effect in  
eradicating the disease should be adopted.(preventive clothing, fumigation, screening and 
treatment of the infected individuals, insecticides-reducing the vector population ) 
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