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Abstract
In this paper, we obtain the linearizing point transformation for the equation of motion of a
free particle in a space of constant curvature using the method of differential forms.
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| [ Introduction

The equation of motion of a free particle in a space of constant curvature is a second order
ordinary differential equation. It was considered by some authors like [4] and [5] using
Symmetry Group Classification (SGC) method and the Generalized Sundman
Transformations (GST) method respectively.

Linearization method using differential forms was derived by [3] for second order ordinary
differential equations. The method provided a simple understanding of the linearization
problem. It 1s important to state that, linearization method in general, has to do with point
transformation (PT) and non-point transformation (NPT) [1]. Point transformation preserves
the integrability of the equation and its Lie symmetry structure [2], and hence the reason for
the use of point transformation.

In this paper, we construct the inearizing point transformation for the equation of motion of a
free particle in a space of constant curvature using the method of differential forms derived

by [3].

2. The Method
Our starting point is a second order ordinary differential equation

y' =1y y). 2.1
We assume a point transformation given by the variables

X=F(xy), Y=G(xy), (2.2)
with a requirement that,

Lt 0 (2.3)

ax? ) -

We first construct, using equation (2.2
/
& - XY (2.4)
dX  FetFyy
where F. + F,y" # 0 and the subscripts x and y denote partial differentiation. The second
derivative equation may be written smmply m terms of a differential d(ﬁ) = 0 which

becomes
(E + Ey')(dG, + y'dG, + G,dy') —
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(Gy + Gyy")(dF, + y'dF, + E,dy") = 0. 2.5)
We can expand (2.5) and write it as
Tdy' +py?+(A+8)y +0 =0, (2.6)
where
T = E,Gy — E,G,, 2.7
and we have the 1-forms
= F,dG, — G, dF,,A = E,dG, — G, dF,,
0 = FdGy — Gy dF, 6 = F,dGy, — GxdFy.}
We can rewrite equation (2.6) as
dy' =a+py +yy'? (2.9)

(2.8)

where

—(A+68 .
a=2p= ()y_?"’. (2.10)

For integrability of equation (2.9) we set ddy' = 0, that is
0=da+dy' AB+y'dB+2y'dy’ Ay +y?dy. (2.11)
Substituting (2.9) into equation (2.11), we have:

O=da+ (a@a+By +yy )AL+ YdB+2y (a+ By +yy™?) Ay + y?dy.
(2.12)

The y'"3term in equation (2.12) vanishes because y A y = 0, we expand equation (2.12) and
equate the coefficients of the other powers of y' to zero to have:
doe= 5 no,dpb = 2y Ao dr=y [ (2.13)

Now, we go back to equations (2.8) and expand the differentials, to have:
p = E(Gyydx + Gy dy) — Gy(Feydx + Fypdy),
A = Fy(Gyxdx + Gyydy — Gy (Fydx + Fopydy),
= F(Gyxdx + Gyydy) — Gy (Frdx + Fydy),
8 = F(Gyydx + Gy, dy) — Gy (Feydx + F,ydy),
which can simply be written as

p = Adx + Bdy,A = Cdx + Ady,c = Ddx + Edy, § = Edx + Hdy, (2.14)
where
A = EGyy — GyFey, B = E,Gyy — Gy Iy
C= Fnyx - GyP;rfo FoGyy — Gy Fy
E = FyGyy — GoF,y H = FeGyy, — G,F,,.
Thus,
o= —(Dax+5ay) = —(Cdx+Edx+Ady+Hdy) o —(Adx+3dy) 2.15)

T
Substituting a f and y mto equation (2.9) and d1V1d111g by dx to convert the differential

forms to functions, we have:
V'+fot+tfiy' +Hy?+ 12 =0, (2.16)
where the f; are given by
fo= %!fl
We define K and L as
K=2L=% (2.18)
and replace D,C, H and B in the 1-forms in equation (2.15) in favour of the f;, K and

L, obtaining
a=—fydx —Kdy,f = (K- fi)dx+ (L — f;)dy,y = —Ldx — f3dy. (2.19)

(c+25) (H+2A) B

f3:T

|2 = (2.17)

"‘]DU
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We also note that

& = (3K - f,)dx + (f, — 3L)dy. (2.20)

T
We see that the 1-forms «, §,y in (2.19)and d—:in equation (2.20) are now expressed in terms

of these four known functions K and L. The first three of these 1-forms can now be
substituted into equation (2.13) on the various functions. If we do that, the first equation for
da, gives the equation

ny_Kx=_K(K_f1)+fO(L_f2) (2-21)
which is nonlinear in K. The other equations give the results:
_Ky+f1y+Lx_f2x=2KL_f0f3 (2.22)
and
Ly _f3x = _L(L_fz) +f3(K _fl) (2-23)
which are also nonlinear. However, we can simplify the situation by defining new variables:
1 U |4
T=E,E=W,A=ﬁ, (224)
So that from (2.18)
U %4
K_W’ L_m_f (2.25)
and from (2.20)
357 = (f, - 3K)dx + (3L — f;)dy. (2.26)

We now have this situation. The dWequation (2.26) gives expressions for W, and Wy,. The
equation (2.21) gives, after substitution for W, an expression

2
Uy = Wny_gUfl Vi +Wfef2 227)
which is linear in U, Vand W. The equation (2.23) gives an expression
2

Vy =Wfs + giz +Ufs —Wfifs (2.28)

which is also linear. The equation (2.22) gives a linear expression
u v
Vx_Uyzgfz +§f1_Wf1y+Wf2x_ 2fofsW. (2.29)
The integrability condition on (2.26) gives a linear expression
u v w w
VitUy=3fo+shi+5fax + 5 h1y (2.30)

Equations (2.29) and (2.30) can be solved for Viand U,. Thus we have expressions for all

derivatives of U, V and W, all of which are linear and homogeneous in the same variables.
That 1s

U =3(=2Uf, = 3Vfo + W(3foy + 3fufy)) dx +5(=Ufo + W(2fay — fox + 3fofs) ) d,
(2.31)
v =2 (VA +W(2fox — fiy — 3fofs)) dx + 3 (3Ufs + 2V f, + W (3fax — 3fi3)) dy,
(2.32)
dW = 2 (=3U + Wf)dx +(3V - Wf)dy.  (2.33)
We summarize all these relations in a nice matrix equation

dr = Mr, (2.34)
where

U
r= (V)and M = Pdx + Qdy,
w
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(2 =3fo 3foy 43R,
P :(g) 0 fl Zfzx_fly_3f0f3
-3 0 fi

1 _fz 0 Zfly _fo ik 3f0f3
Q= (_) 3fs 2, 3fsx — 3fifs
. 0 3

—f2
For integrability of (2.34), ddr = 0 giving
dM =M AM (2.39)
which is not zero since M i1s a matrix. Substitution for M in terms of P and Q gives the
condition
Qx—P,+QP—-PQ=0. (2.36)
This matrix condition in (2.36) reduces to two equations:

nyy + fo(f?:y - 2f3x) + foOy - f3f0x + (é) (f?:xx - foy * flf?:x - Zflfly) (2-3?)

and

f3xx +f3(2f0y _flx) i+ fOfo _f1f3x o (i) (flyy - 2f2xy + 2f2f2x _fzfly) =0.
(2.38)
To summarize, we note that the original differential equation is cubic iny’, with the
coefficients satisfying equations (2.37) and (2.38).
Now, we shall construct the point transformations proper. We will need U, V and
W therefore we need to solve equations (2.34). Once the equations are solved, we construct K
and L from equation (2.25).
In order to find the F(x, y)and G (x, y)for which we are seeking, we revert to equations (2.8)
and solve for dF, dF,, dG.and dG,. Solut:ion for dF.and dF, gives
T T
Solution for dG,and dG,, shows that they satisfy the same equation, so we will write only
equations for the derivatives of F.We note that
6+A=-TBand§ — A =dT,
so we can solve these equations for 6 and A.We can also substitute for o and p in terms of «
and y. We get finally

dr ar
e raap BT (BT)
L o y x 2 ’ y = Iy y 2 i
We substitute for a, 8, y and dT/T from equations (2.19) and (2.20) respectively in terms of

the expressions obtained above, with the fi, K and L.
We now have two equations which can be expressed in matrix form as follows;
dR=ZR, dS=ZS (2.39)

where
7= ((ZK — fi)dx — Ldy fodx + Kdy )
- —Ldx — fody Kdx + (f, — 2L)dy)’

F, G
R:(x) and S:( x).
E, Gy

This linear equation set can be solved forR. There will be two independent solutions, which
can be taken as R and S as seen in equation (2.39). Integrability is guaranteed by setting
ddR = 0. One can solve:

dF = (dx dy)R
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dG = (dx dy)S (2.40)
for F and G.
We can summarize the procedure as follows:
1. Make sure that the original differential equation is a cubic in y'as in equation (2.16)
2. Test the coefficients fto see whether they satisfy equations (2.37) and (2.38).
3. Construct the 3 X 3 matrix M and solve equation (2.34) (linear) for the three
components of r — a special solution is usually sufficient and construct K andj
4. Construct the 2 X 2 matrix Z and solve equation (2.39) (linear) for R or S.
5. Solve equation (2.40); the two independent solutions may be taken as F and G.

5 2 Construction of the Point Transformation
The equation of motion of a free particle in a space of constant curvature given by
y'+3yy' +y3=0 (3.1)

was also considered by [4], using the method of symmetry group classification of ordinary
differential equations: survey of some results.

The equation has the coefficients:
fO = y3ff1 = 3y!
fo=fz=0

which satisfied the linearizability conditions in equations (2.37) and (2.38). Construction of
3 X 3 matrix

—2ydx —y3dx 3y?dx+ 2dy
M = Pdx + Qdy we have; M = 0 ydx —dx
—dx dy ydx

—2yUdx — y3Vdx + W(3y?dx + 2dy) U
so that dr = yVdx — Wdx where 7 = ( V) and
—Udx + Vdy + yWdx w
dr = Mr.

WeletU =0,dU =0 and dV = yVdx — Wdx, dW = Vdy + yWdx. We can see that

W, = yW and W, = V. On integration, we obtain W = eW+XY for some function a(y).
But V = W, therefore, V = e“(y)”y(x + a'(y)). We use a special solution a(y) = 1 so that
U=0, V=xe™and W = eV gsothatK :%: 0, L= % =%

—3ydx —xdy y3dx )

Next we construct the 2 by 2 matrix Z which is Z = (
—xdx —2xdy

e 3
Setting R = (i), we see that dR = ( b(3ydx + xdy) + cy dx)

—bxdx — 2cxdy
so that db = (—=3by + cy3)dx — bxdy and dc = —bxdx — 2cxdy.
Considering by = —bx, we have

b = ke™, (3.2)

where k 1s a constant.
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Differentiating equation (3.2) with respect to y, we see that b, = —kxe™™”. Also,c, = —bx
thatis ¢, = —kxe ™. This is obvious that ¢, = b,,. Integrating, we have as follows

c=-k f xe Vdx + g(y)

7.4 1
Ei=—k [——e_xy +—f e_xydx] +
z = g
c=kxy le™ + ky2e ™ + g(y) (3.3)

Differentiating equation (3.3) with respect to y we have:

-k —Xy k —Xy ’
==+ - (y+2)+g0) G4
We also note that
Cy = —2cx. (3.9)

Equating equations (3.4) and (3.5) and simplifying we have:
G 2ag= 2y~ e Y dladt e (3.6)
Using the integrating factor with P = 2x, Q = 2ky 3e ™Y — kx%2yle ™V, we see that:
LF= el P = ¢J2¥dy — 2%y Therefore g x I.F = [(Q X I. F)dy 4+ mbecomes
geti = f(Zky‘%‘xy — kx?y e ™)eZVdy + m,

where m 1s another constant apart from k. Integrating the above and simplifying, we have that
g=—-ky2e™ —kxy le ™ + me 2%, 3.7
Therefore equation (3.3) becomes
c=kxy le™ + ky 2e ™ —ky 2e ™ — kxy le ™ + me %V,
which is reduced to
ci=me P (3.8)

Summarizing, b = ke ™ and ¢ = me™?*. Now, if dF = bdx + cdy, then, b = F.and
&= Es
y

Considering F, = me~2%, on integration, we obtain:

—me Y

F = + h(x). (3.9)

2x

Now differentiating equation (3.9) with respect to x we see that

—2xy
mye m
E = + e 2 + h'(x).

- — m — . i
Therefore, mx~lye 2% 4+ —e 2% 4+ h'(x) = ke™Y or simpl
y = ply

m

I em2xy, (3.10)

h'(x) = ke™Y — mx " lye 2%V — -
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On integration of equation (3.10) by parts after truncating the last term since it 1s also the
coefficient of the constant m we have: h(x) = %ke_xy — mylnxe 2%,

: -k _ m _
Therefore, equation (3.9) becomes F = e V- —eT2W

— mylnxe %Y or
2x

1 1
F + ke™ (—) + me~2%Y (— + ylnx).
y 2%

Without loss of generality, we let e ™ = e ~2%Y = [nx = 1, and interchanging the coefficient
1 1 * " B i 3
of m we have X = = = 5 + x as the linearizing point transformation.

4. Conclusion

The equation of motion of a free particle in a space of constant curvature given in equation
(3.1) was considered by two authors using two different methods: the (SGS) and the (GST).
Their methods however, pose a difficulty in understanding the linearization problem. It is on
this note that, we considered the same equation using the method of differential forms to give
a clear understanding of the linearization problem.

References
Duarte, L., Moreira, I. and Santos, F. (1994). Linearization under non-point transformations.
Phys. A: Math. Gen. 27, L739-L74.

Grissom, C.,Thompson, G. and Wilkens, G. (1989). Linearization of second Order Ordinary
Differential Equations via Cartan’s Equivalence Method: Journal of Differential.
Equations, 77 (1), 1-15.

Harrison, B. (2002). An old problem Newly treated with Differential Forms: When and How
can the Equation y"' = f(x,y,y") Be linearized? Proceedings of the Institute of
Mathematics of NAS of Ukraine. 43(1), 27-35.

Mahomed, F. (2007). Symmetry group classification of Ordinary differential equations:
Survey of some results, Math. Appl. Sci. Wiley InterScience; 30, 1995-2012.

Nakpim, W. and Meleshko V. (2010). Linearization of Second-Order Ordinary Differential
Equations by Generalized Sundman Transformations: SIGMA 6(51), 11 pages.

122



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

