
Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 474

ENHANCING COMPUTATIONAL TIME FOR A 16X16 PLAYFAIR

MATRIX FOR UNICODE CHARACTERS

LAWAL, I.*, AHMAD, B.I. AND ABDULLAHI, F.B.

Department of Computer Science, Ahmadu Bello University, Zaria, Nigeria

ABSTRACT

Playfair cipher is one of the most popular poly-alphabetic ciphers that can be used suitably for wireless and mobile

devices where security requirements are high and system resources are low. The existing work uses a 16x16

playfair matrix for Unicode characters. The 16x16 matrix is used for characters’ representation and a shuffling

technique is applied after each character encryption. However, the shuffling technique used and character search

in the 16x16 matrix after each character encryption leads to a high computation time. In order to overcome the

shuffling and character research of the existing 16 x 16 algorithm, this work used shifting keys to search for

character sand shuffle the entire matrix without changing the position of each element in the matrix unlike in the

existing work. This paper shows that a 17x17 matrix algorithm performed better in terms of encryption time by

1.29972 seconds and decryption time by 2.76146 seconds on an average. Therefore, an increase in memory to

form a 17x17 matrix has a negligible impact on the enhanced algorithm. Also, the enhanced algorithm transforms

the plaintext into Chinese characters. These Chinese characters (ciphertext) are seen as plaintext which translates

into something meaningful in order to preserve the integrity of the original plaintext and to fend-off suspicious

attacker sun like in the previous study where the ciphertext generated are random characters without any meaning.

Hence, the enhanced algorithm provides a better way of hiding information.

Keywords: Chinese character, ciphertext, hexadecimal, plaintext.

*Correspondence: lawibrahim3@gmail.com

INTRODUCTION

The Playfair cipher was developed for telegraph

secrecy and was the first digraph substitution cipher.

It was invented by Sir Charles Wheatstone in 1854,

but he named it after his friend Lyon Playfair who was

a scientist and a public figure of Victorian England. It

was used by the British forces in both the Boer War

and World War I and also by the Australians in World

War II Bhattacharyya et al. [1]. The Playfair system in

its easiest form uses a 5 by 5 alphabet matrix. Not only

is playfair interesting, but it is also suitable for the

security of wireless and mobile systems [2].

 The advent of digital encryption devices has

rendered the traditional Playfair unsecured. This is

simply because modern computers could easily break

the cipher within seconds using Brute Force and

Frequency Analysis [3]. For this reason, several

authors have modified the traditional playfaircipher

algorithm by adding various techniques to make it

strong and to be able to represent many characters.

Related works
Several authors have worked and improved on the

traditional playfair to combat the issues facing it.

Some of which include: Lahiri [4] who came up with

a new approach which treats each file as a binary file

and applies the playfair algorithm on each byte of the

file. The nibbles of each byte are used to encrypt /

decrypt with the help of a reduced 4×4 reference key

matrix. A nibble consists of 4 bits having a value of

range 0-15. On the other hand, the 4×4 reference key

matrix also contains 16 values, in the range0-15. So,

each pair of the nibbles of a byte is replaced with a

new pair of nibbles and thus new byte is obtained. This

algorithm encrypts / decrypts the file byte wise and

odd length word problem does not arise. It implements

rotation after each encryption of a byte. Some of the

limitations includes: its inability to represent special

characters and it also lacks a larger key matrix which

can be used to enhance the security. It supports only 8

bit characters.

 The paper Enhanced Cryptographic Scheme

(NPSC) proposed by Masadehs et al [5], which is

inspired by Playfair cipher encrypts alphanumeric

messages. It adopts an elaborate key creation method

and consists of two encryption/decryption algorithms

and relies on modular arithmetic calculation for key

generation and cryptographic processes. Key length

must be either 4 or 9 or 16. Two 5x5 matrices were

employed as the backbone for this scheme, one for the

alphabetic characters and the other for numerals.

Thei/j characters are considered the same. It could not

represent special characters and can only support 25

characters.

 The paper proposed by Ahnaf and Rabiul [6],

extended the character support and additional features.

Primarily, the 7x7 matrix supports 49 characters. But,

this model uses 47 of them for general purpose and 2

for special purpose. The character set includes 26

lower-case letters, 10 numerals, 10 most frequently

used punctuation marks and a whitespace character.

The two remaining characters “!” and “~” serve

exclusively as a filler character and a padding

character. This two particular character are not

eligible to participate in plaintext or keyword. During

decryption they are omitted. They eliminate the

existing ambiguity in playfair of using x character as

a filler and for replacing double character in the

plaintext. This cipher supports only 49 characters and

the“!” and “~” characters cannot be used in a plaintext

since its meaning has been redefined.

Lawal et al. (2019); Enhancing computational time for a 16x16 playfair matrix for unicode characters

Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 475

 According to Ahmed et al. [7], this algorithm

can support all language scripts in the world; for this

Unicode is being used and it requires a 256X256

matrix. This is because the value of any character of

any language around the world is between (0 - 65536).

This way the user can encrypt any language including

Kurdish language, space, symbols, special characters,

etc. Next, a hash function of the key will be generated

using Sha512 technique and then it will be merged

with the cipher. This will be used to verify the

Authenticity of the user and prevent the dictionary

attack. The matrix size is too large for mobile devices.

High computational time will be required which is not

suitable for mobile devices.

 Similarly, Nuhu et al. [8] proposed, the size

of the matrix used for Unicode characters was reduced

from 256x256 to 16x16. The identity of a particular

language that is used for encryption was hidden. Also,

it performed swapping of hexadecimal characters,

shuffling of a 16x16 matrix after each encryption of a

character and padding of zeros to the hexadecimal

characters to be encrypted. High computation time in

both encryption/decryption process and character

search in the entire 16x16 matrix. Memory utilization

was not fully taken into consideration by padding the

hexadecimal characters with zeros and shuffling the

16x16 matrix. Therefore, this is not suitable for

mobile devices with low system resources.

The enhanced method

The enhanced algorithm takes in the plaintext and

user’s key. A matrix of 16 x 16 Chinese randomly

selected single characters is created. The user’s key

which is a top row of characters A-F and numbers 0-9

is added to the 16 x 16 matrix to form a 17x17 matrix.

The top row is from 0-9 and A-F, it shifts from left to

right by a number/alphabet each time after an

encryption takes place. The first character shifts to the

position of the last character and the second character

becomes the first character and so on. Shifting of the

key characters shuffles the entire 16x16 matrix of the

Chinese characters. Also, searching of the

hexadecimal characters will be done in the key row

and column unlike in the existing work where the

searching is done in the entire 16x16 matrix. The first

column of the matrix which is the column key is

arranged from 0-9 and A-Z from bottom up. These

keys do not shift continuously like the top row keys

but rather it is static at that position.

Lawal et al. (2019); Enhancing computational time for a 16x16 playfair matrix for unicode characters

Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 476

For 8 bit characters, the plaintext length must be even

otherwise if it is odd a null value is added at the end

of the plaintext. The plaintext is divided into two pairs

and converted to its hexadecimal equivalent. For 16

bit characters, a character is converted to its

hexadecimal equivalent. The first nibble of the first

character is swapped with the last nibble of the second

character and the last nibble of the first hexadecimal

character is swapped with the first nibble of the second

hexadecimal character. The process continues till all

the characters are exhausted to form modified

hexadecimal characters. Apply a substitution of a

column and row intersection of the Chinese character.

The Chinese character gotten as a result of the

intersection becomes the ciphertext of that character.

Shifting of keys will happen before the next

encryption. This process continues till all the

characters get encrypted. Note that the 16x16 Chinese

characters are static while in the existing work it is

shuffled after each encryption of a character. To

decrypt the ciphertext, construct the 16x16 matrix

Chinese matrix and place the top row and first column

keys. Take each Chinese character at a time, locate the

Chinese character in the matrix and get the

corresponding row and column values (this values

forms the modified hexa decimal characters). Divide

the modified hexadecimal characters into pairs and

perform the swapping of the higher nibble of the first

character with the nibble of the second character and

the last nibble of the first character with the first nibble

of the second character. Finally, convert each byte

(pair of nibble) to character and this gives the original

plaintext.

Note that these ciphertext generated as a result of

the row and column substitutions are Chinese

characters which have meanings. A Chinese character

can either mean a word or a phrase and also a word

can comprise of two or three of the Chinese character

e.g. spoon 勺子, chocolate 巧克力.

Enhanced algorithm

Section A shows the entire encryption of plaintext to

ciphertext and decryption of ciphertext to plaintext of

the enhanced algorithm. Illustration of the enhanced

algorithm using English characters.

Section C illustrates how the input plaintext to the

algorithm is encrypted. The plaintext: “demo” is

divided into pairs, converted into their hexadecimal

equivalent and then the nibbles are swapped. Table 1

shows the plaintext –hexadecimal mapping and

swapping of nibbles.

Table 1: Plaintext-hexadecimal mapping

Plaintext d e m o

Hexadecimal Equivalent 44 65 6D 6F

Modified Hexadecimal

decimal

56 44 F6 D6

For the encryption the first byte (56) which has two

nibble is picked. The first nibble (5) is used for the

column key while the second nibble (6) is used for the

row key and the intersecting Chinese character

becomes the ciphertext. Table 2 shows the entire

17x17 matrix and the first ciphertext obtained.

After the first encryption the row key digit shifts

to the end of the row. This shifting of the keys changes

the position of the entire table which means the entire

table has been shuffled. Table 3 shows the intersection

of the cipher character obtained.

For the encryption the next byte (F6) which has

two nibble is picked. The first nibble (F) is used for

the column key while the second nibble (6) is used for

the row key and the intersecting Chinese character

becomes the ciphertext. Table 4 shows the intersection

of the cipher character obtained.

For the encryption the next byte (D6) which has two

nibble is picked. The first nibble (D) is used for the

column key while the second nibble (6) is used for the

row key and the intersecting Chinese character

becomes the ciphertext. Table 4 shows the intersection

of the cipher character obtained.

Table 6: the ciphertext – plaintext mapping. Each

of the ciphertext generated is converted back to its

hexadecimal equivalent and to its original character.

These (矢耳冫辵) are the Chinese ciphertext obtained

with their various meanings: 矢 stands for arrow, 耳

stands for ear, 冫 stands forice/cold, and辵 stands for

stamping on the earth

Table 6: Ciphertext- plaintext mapping

Table 6 shows the ciphertext generated from the

plaintext “demo” with the modified hexadecimal after

swapping a pair of byte as seen in table1.

RESULTS AND DISCUSSION

The enhanced algorithm was implemented using java.

The ability of the enhanced algorithm to hide

plaintexts in Chinese characters makes it look less

than a cipher and more of a normal plaintext. This

unique feature makes the cipher strong enough to

withstand any form cryptanalysis and tends to fend-

off any potential attacker. The meaning of the Chinese

characters generated has no relationship with the

plaintext encrypted. The cipher encrypt more faster

than the one proposed by Nuhu et al. [8] because of

the reduction in character search and matrix shuffling.

Figure 1 shows the interface of the enhanced

algorithm with a plaintext of size 248 kb to be

encrypted. Since the plaintext to be encrypted is in

English so the English is selected. Figure 2 shows the

Ciphertext 矢 而 冫 辵

Hexadecimal Equivalent 56 44 F6 D6

Plaintext d e M O

Lawal et al. (2019); Enhancing computational time for a 16x16 playfair matrix for unicode characters

Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 477

generated Chinese ciphertext within a timeframe of

0.133 seconds. Figure 3 shows the plaintext area

cleared for ciphertext to decrypted back to its original

plaintext. Figure 4 shows that it took 0.099 seconds to

decrypt the Chinese ciphertext to the original

plaintext.

Brute force attack

Brute force seeks to find the possible combination of

possible keys. Since the algorithm is made up of the

whole languages, brute force will go through the entire

languages of 65536x65536 characters. However, it is

possible to keep ciphering the ciphertext as many

times as possible with the same key or different keys

which makes it even more difficult to decrypt. This

enhanced work cannot be cracked by brute force.

For Nuhu et al. [8] work which used Unicode

characters, the attacker has to find from a

65536x65536 digraphs, which is practically

impossible. Therefore, it cannot be cracked by Brute

Force Attack.

Figure 5 shows an encryption of a word demo with an

encryption key consisting of 3 letters. Figure 6 shows

a brute force approach which tries to guess the

encryption key by using a different key of 8 characters

on the ciphertext generated by the word “demo”.

Known plaintext attack

The enhanced cipher is free from known plaintext

attacked since the ciphertext does not leaves any trace

of something hidden. The key matrix is being shuffled

after encrypting each character by just shifting a key

character. This eliminates the fact that a pair of

character and its reverse will encrypt in a similar

fashion. (i.e. if XY encrypt to AB then YX will

encrypt to BA). In the enhanced cipher XY encrypt to

臣米 then YX will encrypt to牛牙 using the keyword

12a.

Figure 7 shows the encryption of two characters “a”

and “b” into two Chinese characters臣 and 米 which

means: servant and rice respectively. Figure 8 shows

that there is no one-one mapping of characters. This

kind of attack will keep repeating characters to see if

there is any particular pattern it can get to come up

with a strategy to break the cipher. But trying “b” and

“a” will get another different Chinese character 牛 and

牙 which means: cow/ox and teeth respectively.

Frequency analysis

Frequency analysis seeks to uncover the message by

studying the frequency of letters or groups of letters

contained in the ciphertext. Frequency analysis will be

of no good since there is no one-to- one mapping i.e.

repetition of characters leads to different Chinese

characters and also means a different thing entirely.

Encrypting the same character leads to different

Chinese character. According to Zhao and Zhang [9]

Chinese characters have a total of 85000 different

Chinese characters. The probability of a character

reappearing in a ciphertext gives a pattern which

makes it easy for an attacker to break. The probability

of occurrence an attacker will consider in the

enhanced cipher is 1/85000 = 0.0000111764.

For Nuhu et al. [8] the probability of occurrence

that an attacker will consider is1/65536 = 0.0000152.

Therefore, probability of occurrence of a character in

the enhanced cipheris less compared to that of Nuhu

et al [8] which makes it more secured.

Low time requirement

Table 7 shows the time for encryption and decryption

it took the enhanced algorithm and that of Nuhu et al.

[8] to encrypt and decrypt different size of text in

kilobyte. The running time for both the enhanced

algorithm and that of Nuhu et al. [8] are shown in

Table 7. It can be seen that the enhanced algorithm

runs faster when compared to that of Nuhu et al. [8]

as shown in Table 7. Shuffling and searching for

characters in a 16x16 matrix will give rise to high

computation time.

Lawal et al. (2019); Enhancing computational time for a 16x16 playfair matrix for unicode characters

Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 478

Table 7: Encryption and decryption time

Figure 5: Encryption time for both ciphers

Figure 6: Decryption time for both ciphers

The encryption time for the enhanced algorithm is very

low when compared with Nuhu et al. [8] as shown in

Figure 5. This is because the enhanced algorithm

searches for a nibble in the row and column key while

Nuhu et al. [8] algorithm searches for two bytes in the

matrix. Also, the entire matrix is not shuffled but shifts

just the row key characters to give the entire matrix a

new look.

The decryption time for the enhanced algorithm is

very low when compared with Nuhu et al. [8] because

only a byte (Chinese character) searched in the entire

matrix and the resultant nibbles intersecting the

0

0.03

0.06

0.09

0.12

0.15

2 4 6 8 10 12 14

Ti
m

e
 in

 (
se

c)

Text Size(KB)

Comparison of the two algorithms

Time to encrypt for the
enhanced algorithm

Time to encrypt for
Nuhu et al. [8]

0

0.03

0.06

0.09

0.12

0.15

2 4 6 8 10 12 14

Comparison of the two algorithms

Time to decrypt for the
enhanced algorithm
Time to decrypt for Nuhu
et al. [8]

Size of text (KB) 2 4 6 8 10 12 14

Encryption time (sec)

Enhanced algorithm

0.016 0.028 0.031 0.046 0.047 0.056 0.078

Decryption time (sec)

enhanced algorithm

0.015 0.016 0.022 0.031 0.032 0.047 0.063

Encryption time (sec)

Nuhu et al. [8]

0.046 0.062 0.063 0.078 0.109 0.125 0.141

Decryption time (sec)

Nuhu et al.[8]

0.032 0.046 0.057 0.063 0.088 0.094 0.125

Lawal et al. (2019); Enhancing computational time for a 16x16 playfair matrix for unicode characters

Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 479

character are obtained. Unlike Nuhu et al. [8] algorithm

two bytes have to be searched in order to obtain the

substituted bytes and the entire matrix is shuffled after

each encryption.

CONCLUSION

It is possible to enhance the computation time and

memory efficiency of a 16x16 playfair matrix for

encrypting Unicode characters so it can be more suitable

for mobile devices that have low memory and require

low power consumption. Increasing the size of the

matrix to 17x17 and shifting the row key characters

instead of shuffling the entire matrix after each

encryption has led to the significant reduction in the

computation time as shown in Table 7. Also, swapping

of nibbles carried out is to ensure that the strength of the

algorithm is not compromised. It is possible to transform

any language into Chinese characters which have

meanings in order to fend-off suspicion by attackers.

REFERENCES

1. BHATTACHARYYA, S., CHAND, N. &

CHAKRABORTY, S. (2014). A Modified

Encryption Technique using Playfair Cipher

10 by 9 Matrix with Six Iteration Steps.

Computer Engineering & Technology, 3(2):

307 – 312.

2. KHAN, S.A. (2015). Design and Analysis of Playfair

Ciphers with Different Matrix Sizes.

International Journal of Computing and

Network Technology. 3(3): 2210-1519.

3. TUNGA, H. & MUKHERJEE, S., (2012). A New

Modified Playfair Algorithm Based On

Frequency Analysis. International Journal

of Emerging Technology and Advanced

Engineering, ISSN 2250-2459, Volume 2,

Issue 1, January 2012

4. LAHIRI, A., (2012). Design and Implementation and

Enhanced Binary Playfair Algorithm Using a

4x4 Key Matrix. Jadavpur University,

Kolkata, India, pp 1-59.

5. MASADEHS. R., AL_SEWADIH. A. & WADIM, A.

(2016). A Novel Paradigm for Symmetric

Cryptosystem. (IJACSA) International

Journal of Advanced Computer Science and

Applications, Vol. 7, No. 3

6. AHNAF, T.S. & RABIUL, I. (2014). An efficient

modification to Playfair Cipher. Ulab

Journal of Science and Engineering Vol. 5,

NO. 1, (ISSN: 2079-4398).

7. AHMED, O.H., AHMED, A.M., & AHMED, S. H.

(2015). Improving Playfair Algorithm to

Support User Verification and all the

Languages in the World including Kurdish

Language. International Journal of

Engineering and Computer Science, 4(8):

14058-14062.

8. NUHU et al. (2017). Reduced Playfair Matrix for

Unicode characters; Nigerian Journal of

Scientific Research, 16(4): 407-411 July –

August; njsr.abu.edu.ng

9. ZHAO, S. & ZHANG, D. (2008). The Totality of

Chinese Characters – A Digital Perspective.

Journal of Chinese Language and

Computing 17(2): 107-125

10.http://www.chinaknowledge.de/Literature/radicals.h

tm. Retrieved November, 2018.

11. INDEPENDENT SCHOOLS EXAMINATIONS

BOARD (ISEB) Mandarin_ Chinese_

Common_Entrance_Level_1_and_2_word_

and_character_list.pdf. Retrieved August,

2018.

Table 2: Starting 17x17 matrix

Lawal et al. (2019); Enhancing computational time for a 16x16 playfair matrix for unicode characters

Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 480

Table 3: First shift of key value

Table 4: Second shift of key value

Table 5: Third shift of key value

Figure 1: The interface of the enhanced algorithm with a plaintext to be encrypted

Figure 2: Displays the generated Chinese ciphertext from the plaintext.

Lawal et al. (2019); Enhancing computational time for a 16x16 playfair matrix for unicode characters

Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 481

Figure 3: Blank text area which will display the result of the decryption of the ciphertext.

Figure 4: Decryption of the Chinese ciphertext back to the original plaintext that was

used for the encryption

Lawal et al. (2019); Enhancing computational time for a 16x16 playfair matrix for unicode characters

Nigerian Journal of Scientific Research, 18(5): 2019; September-December; njsr.abu.edu.ng; ISSN-0794-0319 482

Figure 5: shows an encryption demo

Figure 6: shows a decryption of demo with a wrong keyword

Figure 7: shows an encryption of character letters “a” and “b” into Chinese characters

Figure 8: Shows decryption of 臣米 Chinese characters

