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Abstract 

 
The study of the stability of solutions to differential equations is a fundamental and 

ongoing area of research in mathematics and applied sciences with numerous 

applications, and it provides a framework for analysing the behaviour of dynamical 

systems and predicting their long-term behaviour. For a numerical solution to be useful it 

must be both consistent and stable, and such a solution can be said to be stable if small 

errors in the initial data or in the numerical approximation do not grow unbounded as the 

computations progresses. In this paper, the stability of finite difference methods for time-

dependent Schrodinger equation with Dirichlet boundary conditions on a staggered mesh 

was considered with explicit and implicit discretization. It is demonstrated that the 

solution is conditionally stable for the explicit finite difference technique and 

unconditionally stable for the implicit finite difference methods using the numerical 

algorithm's matrix representation. We will utilize a 1D harmonic oscillator problem to 

demonstrate this behaviour.   
 
Keywords: Schrodinger equation; finite difference; discretization; Dirichlet boundary 

conditions; Von Neumann; Crank-Nicolson. 

 

1 Introduction 
 

The concept of time-dependent Schrödinger equation illustrated in literature and even 

during classroom teaching is mostly either complex or meant for advanced learners [1]. 

The stability of a differential equation refers to the behaviour of its solutions under small 

perturbations or changes in the initial conditions [2]. In other words, it describes how 

sensitive the solution of a differential equation is to changes in the initial conditions or 

parameters. The Schrödinger equation, also known as Schrödinger’s wave equation, is a 

partial differential equation that employs the wave function to explain the dynamics of 
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quantum mechanical systems. This equation can be used to determine the trajectory, 

positioning, and energy of these systems [3]. When little changes in the initial 

circumstances or parameters result in comparably tiny changes in the solution over time, 

the differential equation is said to be stable. Conversely, the differential equation is 

considered unstable if tiny changes to the initial conditions or parameters cause 

significant changes in the solution over time. The stability of a differential equation is 

important because it determines the long-term behaviour of its solutions. In particular, a 

stable differential equation will have solutions that approach a steady-state or equilibrium 

solution over time, while an unstable differential equation will have solutions that diverge 

or oscillate indefinitely [4,4a].  

 

The study of stability in differential equations is a fundamental and ongoing area of 

research in mathematics and applied sciences, with numerous applications and it provides 

a framework for analysing the behaviour of dynamical systems and predicting their long-

term behaviour. There are many different concepts and techniques that have been 

developed to analyse the stability of differential equations, depending on the specific 

properties of the equations and the types of solutions of interest [4a].  

 

1.1 The Schrodinger equation 
 

The Schrodinger equation, often called the Schrodinger wave equation is a fundamental 

equation in quantum mechanics that describes the time evolution of a quantum state [5], 

which is represented by a wave function. It was developed by the Austrian Physicist 

Erwin Schrodinger and it is the fundamental equation of Physics for describing quantum 

mechanical behaviour [4a,6,7]. In pure mathematics, the Schrodinger equation and its 

variants are one of the fundamental equations studied in the field of partial differential 

equations, and have many important applications in geometry, spectral and scattering 

theory, and integral systems [8]; and quantum mechanics, including the calculation of 

energy levels and transition probabilities of atoms and molecules, the description of 

quantum tunnelling and scattering, and the study of the behaviour of condensed matter 

systems [4a]. 

 

The Schrödinger equation is a probabilistic equation, meaning that it gives the probability 

distribution of the location of a particle in space at any given time. The wave function 

itself is a complex-valued function that encodes the amplitude and phase of the particle's 

probability wave. The absolute square of the wave function gives the probability density 

of finding the particle at a given location [4a]. 

 

There are basically two variants of Schrodinger’s equation – the time-dependent 

Schrodinger equation (TDSE) and the time-independent Schrodinger equation 

respectively: 

 

−
ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2 + 𝑉(𝑥)Ψ = 𝑖ℏ
𝜕Ψ

𝜕𝑡
,   0 ≤ 𝑥 ≤ 𝐿,   𝑡 ≥ 0                                                (1) 

 

−
ℏ2

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2
+ 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥),   0 ≤ 𝑥 ≤ 𝐿                                         (2) 
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Where ℏ  = 6.6260693 × 10−34 𝑚2 kg / s  (reduced Planck constant), 𝑚 =
mass of particle and𝑉(𝑥) = potential energy of particle [9]. 
 

1.2 Finite difference method 
 

The finite difference method is a numerical technique for solving differential equations 

by approximating their derivatives using finite differences. It involves discretizing the 

domain of the differential equation into a grid of points and approximating the derivatives 

of the solution at each point using the values of the solution at neighbouring points 

[4a,10]. The basic idea of the finite difference method is to approximate the derivatives of 

the solution using finite difference quotients, which involve differences in the solution 

values at nearby points. It is based on subdividing the domain of the problem by 

introducing a mesh of discrete points for each of the independent variables. The resulting 

system of algebraic equations is then solved by the appropriate method [4a]. 
  
Finite difference is powerful and one of the most widespread numerical techniques for 

solving PDE, particularly in situations where analytical solutions are difficult or 

impossible to obtain. It is however important to emphasize that high-order finite 

difference methods have good properties for solving wave problems efficiently. 

Nevertheless, for time-dependent wave-dominated problems that include boundary 

conditions, it has historically been challenging to construct stable Discretization’s with 

these types of methods [4a,11]. 
 

The finite difference method has applications in many fields, including physics, 

engineering, finance, and biology. 
 

1.3 Discretization of finite differences 
 

We shall assume a hypothetical case of a finite domain with a time coordinate 𝒕, and a 

spatial coordinate 𝒙. Thus, a function is only defined for the values of 𝒙  and 𝑡  that 

correspond to points in the mesh such that for a given continuous function 𝜓, there are 

available values of it at (𝑡𝑖 , 𝑥𝑗), denoted by 𝜓𝑖,𝑗. So, for the uniformly discretized domain, 

we have [4a]: 

 

∆𝑥 = 𝑥𝑗+1 − 𝑥𝑗     &   ∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖                                                                (3) 

 

Constructing the difference operators for the derivatives 𝜓𝑖,𝑗, we have: 

 

▪ Forward and backward differences respectively as: 

 

𝜓′(𝑥𝑗) =  
𝑢(𝑥𝑗+1)−𝑢(𝑥𝑗)

∆𝑥
+ 0(∆𝑥)  &   𝜓′(𝑥𝑗) =  

𝑢(𝑥𝑗)−𝑢(𝑥𝑗−1)

∆𝑥
+ 0(∆𝑥)           (4) 

 

▪ Centre finite difference approximation: 
 

𝜓′(𝑥𝑗) =  
𝑢(𝑥𝑗+1)−𝑢(𝑥𝑗−1)

2∆𝑥
+ 0(∆𝑥)                                                (5) 
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2 The Quantum Harmonic Oscillator Problem 
 

The quantum harmonic oscillator problem is a fundamental problem in quantum 

mechanics that describes the behaviour of a particle in a harmonic oscillator potential [5]. 

It is a model system that is used to understand the quantum mechanical properties of a 

wide range of physical systems, including atoms, molecules, and solids [4a]. The 

quantum harmonic oscillator problem is of great importance in quantum mechanics, as it 

provides a simple model for understanding the behaviour of many physical systems. The 

problem has many applications in chemistry, physics, and engineering, including the 

study of molecular vibrations, the behaviour of electrons in solids, and the properties of 

lasers and other optical devices [4a]. 

 

The quantum harmonic oscillator is one of the foundational problems in quantum 

mechanics and can be applied in the understanding of complex modes of vibration in 

larger molecules, the theory of heat capacity, the motion of atoms in a solid lattice, etc. 

[4a,12].  

 

In this example, the time-dependent Schrodinger equation gives us an understanding of 

how the initial information about the particle in the quantum harmonic system behaves 

and changes over time. The one-dimensional (1D) Schrodinger wave equation for the 

Harmonic Oscillator can be put in the following form [4a]: 

 

−
ℏ2

2𝑚

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2 + 𝑉(𝑥)𝜓(𝑥, 𝑡) = 𝑖ℏ
𝜕𝜓(𝑥,𝑡)

𝜕𝑡
;   𝑡 > 0, 0 < 𝑥 < 𝐿                           (6) 

       

Subject to the following Dirichlet boundary conditions: 

 

𝜓(0, 𝑡) = 𝜓(𝐿, 𝑡) = 0   and   𝜓(𝑥, 0) =  √2 𝑠𝑖𝑛(𝜋𝑥)      
 

▪ Equation (6) describes the particle 𝑥, in a quantum harmonic oscillator motion 

with mass, 𝑚  in the interval 0 < 𝑥 < 𝐿  and 𝑡 > 0  under the influence of the 

potential,  
 

𝑉(𝑥) =
1

2
𝑚𝜔2𝑥2 =

1

2
𝑘𝑥2  

 

▪ Discretising equation (6), by replacing the space derivative with the difference 

technique at 𝑗𝑡ℎ time step and the time derivative by a forward difference gives a 

linear system of equations for the time given as: 

▪  
𝑖ℏ

𝑘
(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗) = −

ℏ2

2𝑚

1

ℎ2 (𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗) +
1

2
𝐾𝑥𝑖

2𝜓𝑖,𝑗               (7) 

 

Where 𝑉(𝑥) =
1

2
𝐾𝑥2 (𝐾 is a constant - the wave number) and we shall assume ℏ = 𝑚 =

𝐾 = 1, so that we have equation (8) as follows:  
 

𝑖

𝑘
 (𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗) = −

1

2ℎ2
(𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗) +

1

2
𝑥𝑖

2𝜓𝑖,𝑗                        (8) 

 

i.e., 
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(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗) =
𝑖𝑘

2ℎ2 (𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗) −  
𝑖

2
𝑘𝑥𝑖

2𝜓𝑖,𝑗                          (9) 

 

Where 0 < 𝑘 < 𝑇, and ∆𝑡 = 𝑘 = 𝑡𝑗 − 𝑡𝑗−1 corresponding to the mesh points of T. While 

the mesh points of 𝑥 are given as, ∆𝑥 = ℎ = 𝑥𝑖 − 𝑥𝑖−1.  
  
Thus, equation (9) can be re-written as: 
 

𝜓𝑖,𝑗+1 −  𝜓𝑖,𝑗 =
𝑖𝑘

2ℎ2 (𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 +  𝜓𝑖−1,𝑗) −  
𝑖𝑘

2
𝑥𝑖

2𝜓𝑖,𝑗   

 

Let 𝒓 =
𝒊𝒌

𝟐𝒉𝟐, so that: 

 

𝜓𝑖,𝑗+1 =  𝑟𝜓𝑖−1,𝑗 − 2𝑟𝜓𝑖,𝑗 + 𝑟𝜓𝑖+1,𝑗 −
𝑖𝑘

2
𝑥𝑖

2𝜓𝑖,𝑗 + 𝜓𝑖,𝑗   

           = 𝑟𝜓𝑖−1,𝑗 + (1 − 2𝑟 −
𝑖𝑘

2
𝑥𝑖

2) 𝜓𝑖,𝑗 + 𝑟𝜓𝑖+1,𝑗  

            =  𝑟𝜓𝑖−1,𝑗 + 𝑠𝜓𝑖,𝑗 + 𝑟𝜓𝑖+1,𝑗                                                                         

                                                                            (10) 
 

where 𝑠 = 1 − 2𝑟 −
𝑖𝑘

2
𝑥𝑖

2.  

 

The graphs below display the stability of the solution at various mesh intervals: 
 

2.1 Crank-Nicolson FD approximation for the 1D harmonic 

oscillator 
 

The Crank-Nicolson method provides an implicit scheme that is second-order accurate in 

both space and time [13]. Again, we consider the same time-dependent equation of 

equation (6), given below [4a]: 

 

−
ℏ2

2𝑚

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2
+ 𝑉(𝑥)𝜓(𝑥, 𝑡) = 𝑖ℏ

𝜕𝜓(𝑥,𝑡)

𝜕𝑡
;    0 < 𝑥 < 𝐿, 𝑡 > 0                          
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Fig. 1. Real and imaginary part of the central difference numerical solution to 

equation (6) with 𝒙𝟎 = 𝟎,   𝒙𝒏 = 𝟏. 𝟎,  𝒉 = 𝟎. 𝟏 at 𝒕𝟎 = 𝟎,  𝒕𝒎 = 𝟏. 𝟎,  𝒌 = 𝟎. 𝟏,  where 

𝒎 = 𝒏 = 𝟏𝟎 & 𝒓 = 𝟓. 𝟎 

 

Again, we assume, 𝑚 = ℏ = 1, then we have: 

 

−
1

2

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2 +
1

2
𝑘𝑥2𝜓(𝑥, 𝑡) = 𝑖

𝜕𝜓(𝑥,𝑡)

𝜕𝑡
                                                                (11) 

 

Where 𝑉(𝑥) =
1

2
𝐾𝑥2. Also, taking 𝐾 = 1, yields: 

 

−
1

2

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2 +
1

2
𝑥2𝜓(𝑥, 𝑡) = 𝑖

𝜕𝜓(𝑥,𝑡)

𝜕𝑡
                                                               (12) 

 

 



 
 
 

Research Updates in Mathematics and Computer Science Vol. 6 

Stability of Finite Difference Solution of 1D Time-Dependent Schrodinger Wave Equation 

 

 
 

 
160 

 

 
 

Fig. 2. Real and imaginary part of the central difference numerical solution to 

equation (3.55) with 𝒙𝟎 = 𝟎,  𝒙𝒏 = 𝟏. 𝟎,  𝒉 = 𝟎. 𝟏 at 𝒕𝟎 = 𝟎,  𝒕𝒎 =
𝟏.𝟎

𝟓
= 𝟎. 𝟐,  𝒌 =

𝟎. 𝟎𝟐, where 𝒎 = 𝒏 = 𝟏𝟎 & 𝒓 = 𝟏. 𝟎 

 

 

 
 

Fig. 3. Real and imaginary part of the central difference numerical solution to 

equation (6) with 𝒙𝟎 = 𝟎,  𝒙𝒏 = 𝟏. 𝟎,  𝒉 = 𝟎. 𝟏 at 𝒕𝟎 = 𝟎,  𝒕𝒎 =
𝟏.𝟎

𝟏𝟎
= 𝟎. 𝟏,  𝒌 = 𝟎. 𝟎𝟏, 

where 𝒎 = 𝒏 = 𝟏𝟎 & 𝒓 = 𝟎. 𝟓 
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Fig. 4. Real and imaginary part of the central difference numerical solution to 

equation (6) with 𝒙𝟎 = 𝟎,  𝒙𝒏 = 𝟏. 𝟎,  𝒉 = 𝟎. 𝟎𝟏 at 𝒕𝟎 = 𝟎,  𝒕𝒎 =
𝟏.𝟎

𝟏𝟎
= 𝟎. 𝟏,  𝒌 =

𝟎. 𝟎𝟎𝟏, where 𝒎 = 𝒏 = 𝟏𝟎0 & 𝒓 = 𝟓. 𝟎 

 

From equation (12), using the average centred difference at the forward time step 𝑗 + 1, 

and the current time step  𝑗, with ∆𝑡 = 𝑘, and ∆𝑥 = ℎ, gives: 

 
𝑖

𝑘
(𝜓𝑖,𝑗+1 −  𝜓𝑖,𝑗) = −

1

2
[

1

2ℎ2
((𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗) + (𝜓𝑖+1,𝑗+1 −

2𝜓𝑖,𝑗+1 + 𝜓𝑖−1,𝑗+1)) + 𝑥𝑖
2𝜓𝑖,𝑗]                                                                              (13) 

 

i.e., 

 

𝑖(𝜓𝑖,𝑗+1 −  𝜓𝑖,𝑗) = −
𝑘

2∗2ℎ2 (𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗 + 𝜓𝑖+1,𝑗+1 − 2𝜓𝑖,𝑗+1 +

𝜓𝑖−1,𝑗+1) +
𝑘

2
𝑥𝑖

2𝜓𝑖,𝑗                                                                                      (14) 
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Let 𝑟 =
𝑖𝑘

2ℎ2, so that: 
 

(𝜓𝑖,𝑗+1 −  𝜓𝑖,𝑗) =
𝑟

2
(𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗 + 𝜓𝑖+1,𝑗+1 − 2𝜓𝑖,𝑗+1 +

𝜓𝑖−1,𝑗+1) −
𝑖𝑘

2
𝑥𝑖

2𝜓𝑖,𝑗                                                                             (15) 
 

i.e., 
 

−
𝑟

2
𝜓𝑖−1,𝑗+1 + (1 + 𝑟)𝜓𝑖,𝑗+1 −

𝑟

2
𝜓𝑖+1,𝑗+1 =

𝑟

2
𝜓𝑖−1,𝑗 + (1 − 𝑟)𝜓𝑖,𝑗 +

𝑟

2
𝜓𝑖+1,𝑗 −

𝑖𝑘

2
𝑥𝑖                                                                                     (16) 

 

3 Order, Accuracy and Stability Analysis of Finite 

Difference Method 
 

The truncation error and stability issues affect the choice of mesh staggering for most 

numerical methods and the finite difference method is not an exception [4a]. 

 

 
 

Fig. 5. Real and imaginary part of the Crank-Nicolson finite difference numerical 

solution of equation (16) with ∆𝒙 = 𝒉 = 𝟎. 𝟏 at 𝒕𝟎 = 𝟎,  𝒕𝒎 = 𝟎. 𝟏,  𝒌 = 𝟎. 𝟎𝟏 and 

𝒎 = 𝒏 = 𝟏𝟎; 𝒓 = 𝟎. 𝟓 
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Fig. 6. Real and imaginary part of the Crank-Nicolson finite difference numerical 

solution of equation (16) with ∆𝒙 = 𝒉 = 𝟎. 𝟏 at 𝒕𝟎 = 𝟎,  𝒕𝒎 = 𝟏. 𝟎,  𝒌 = 𝟎. 𝟏 and 𝒎 =
𝒏 = 𝟏𝟎; 𝒓 = 𝟓. 𝟎 
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Fig. 7. Real and imaginary part of the Crank-Nicolson finite difference numerical 

solution of equation (16) with ∆𝒙 = 𝒉 = 𝟎. 𝟎𝟏 at 𝒕𝟎 = 𝟎,  𝒕𝒎 = 𝟏. 𝟎,  𝒌 = 𝟎. 𝟎𝟏 and 

𝒎 = 𝒏 = 𝟏𝟎𝟎; 𝒓 = 𝟓𝟎 

 

3.1 Explicit method 
 

Consider the finite difference solution for the one-dimensional Schrodinger equation: 

 

−
ℏ2

2𝑚

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2
+ 𝑉(𝑥)𝜓(𝑥, 𝑡) = 𝑖ℏ

𝜕𝜓(𝑥,𝑡)

𝜕𝑡
;      0 < 𝑥 < 𝐿, 𝑡 > 0  

 

Assuming, 𝑚 = ℏ = 1, then we have: 

 

−
1

2

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2 +
1

2
𝑥2𝜓(𝑥, 𝑡) = 𝑖

𝜕𝜓(𝑥,𝑡)

𝜕𝑡
  

 

or 

 

−
1

2
𝜓𝑥𝑥 +

1

2
𝑥2𝜓 = 𝑖𝜓𝑡                                                                               (17) 

 

Subject to the conditions: 

 

𝜓(𝑥, 0) = 𝑓(𝑥), for  0 < 𝑥 < 𝐿  
 

𝜓(0, 𝑡) = 𝑔0(𝑥), 𝜓(𝐿, 𝑡) = 𝑔1(𝑥) for  0 < 𝑡 < 𝑇 
 

Discretising, we have: 
 

𝜓𝑡 =  
𝑖

𝑘
(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗)                                                                                (18) 

 

and 
 

−
1

2
𝜓𝑥𝑥 = −

1

2ℎ2 (𝜓𝑖−1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖+1,𝑗)                                       (19) 
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where  𝑘 = ∆𝑡, and ℎ = ∆𝑥. 

 

Combining, we have: 

 
𝑖

𝑘
(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗) = −

1

2ℎ2
(𝜓𝑖−1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖+1,𝑗) + 𝑣𝑖𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗           (20) 

 

or 

 

𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗 =
𝑖𝑘

2ℎ2 (𝜓𝑖−1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖+1,𝑗) − 𝑖𝑘𝑣𝑖                                         (21) 

 

Equation (21) can be simplified by introducing the parameter,  𝑟 =
𝑖𝑘

2ℎ2 and solving for 

𝜓𝑖,𝑗+1, we have: 

 

𝜓𝑖,𝑗+1 = 𝑟𝜓𝑖+1,𝑗 + (1 − 2𝑟)𝜓𝑖,𝑗 + 𝑟𝜓𝑖−1,𝑗 − 𝑖𝑘𝑣𝑖                                            (22) 

 

Note that the 𝑥 and 𝑡 meshes must be chosen so that 0 < ℜ(𝑟) ≤ 0.5 in order to ensure 

stability. 

 

Thus, a numerical method is stable if errors that may be present at one stage of the 

computation do not grow as the process proceeds. In other words, the errors made at one 

stage of the computation do not cause increasingly large errors as the computations are 

continued, but rather will eventually damp out [4a,13]. 

 

3.2 Implicit method 
 

Consider again, the Schrodinger equation of equation (17): 

 

−
1

2
𝜓𝑥𝑥 + 𝑣(𝑥)𝜓 = 𝑖𝜓𝑡;     0 < 𝑥 < 𝐿, 𝑡 > 0  

 

Discretising, we have: 

 
𝑖

𝑘
(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗) = −

1

2ℎ2 (𝜓𝑖−1,𝑗+1 − 2𝜓𝑖,𝑗+1 + 𝜓𝑖+1,𝑗+1) + 𝑣𝑖  

 

which gives: 

 

𝜓𝑖,𝑗 = −
𝑖𝑘

2ℎ2 (𝜓𝑖−1,𝑗+1 − 2𝜓𝑖,𝑗+1 + 𝜓𝑖+1,𝑗+1) + 𝜓𝑖,𝑗+1 + 𝑖𝑘𝑣𝑖  

         = −
𝑖𝑘

2ℎ2 (𝜓𝑖−1,𝑗+1 − 2𝜓𝑖,𝑗+1 + 𝜓𝑖+1,𝑗+1) + 𝜓𝑖,𝑗+1 + 𝑖𝑘𝑣𝑖   

       = −𝑟𝜓𝑖−1,𝑗+1 + (1 + 2𝑟)𝜓𝑖,𝑗+1 − 𝑟𝜓𝑖+1,𝑗+1 + 𝑖𝑘𝑣𝑖                                   (23) 

 

3.3 Truncation error 
 

These are measures of the error by which the analytical solution of a differential equation 

does not satisfy the difference equation at the grid points and are obtained by substituting 

the analytical solution of the continuous problem into the numerical scheme [4a]. A 
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necessary condition for the convergence of the numerical solutions to the continuous 

solution is that the local truncation error tends to zero as the mesh size goes to zero. In 

this case, the method is said to be consistent [4a]. 

 

The explicit and implicit finite difference representation of the partial derivatives in the 

Schrodinger equation has the same order except that the second derivative for the implicit 

method is at step 𝑗 + 1  rather than at step 𝑗 for the explicit method. Thus, we have [4a]: 

 

𝜓𝑡(𝑥𝑖 , 𝑡𝑗) =  
𝑖

𝑘
(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗) + 0(𝑘)                                                      (24) 

 

and 

 
1

2
𝜓𝑥𝑥(𝑥𝑖 , 𝑡𝑗) =

1

2ℎ2 (𝜓𝑖−1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖+1,𝑗) + 0(ℎ2)                               (25) 

 

Substituting into the Schrodinger equation and simplifying, we have the truncation 

error,  𝐸𝑖,𝑗 for the explicit method to be: 

 

𝐸𝑖,𝑗 = 𝛼𝜓𝑥𝑥(𝑥𝑖 , 𝑡𝑗) − 𝛽𝜓𝑡(𝑥𝑖 , 𝑡𝑗) = +0(𝑘) + 0(ℎ2)                                      (26) 

 

While, for the implicit scheme/method, the truncation error is given by:  

 

𝐸𝑖,𝑗+1 = 𝛼𝜓𝑥𝑥(𝑥𝑖 , 𝑡𝑗+1) − 𝛽𝜓𝑡(𝑥𝑖 , 𝑡𝑗) = +0(𝑘) + 0(ℎ2)                               (27) 

 

It follows that the truncation error for the explicit method is the same as for the implicit 

method and it is given as 0(ℎ2 + 𝑘) . However, for the Crank-Nicolson method, the 

truncation error, 𝐸𝑖,𝑗 is slightly less and is given by: 

 
𝜓𝑖,𝑗+1−𝜓𝑖,𝑗

2.
𝑘

2

=
𝑐𝑘

2(2ℎ2)
[(𝜓𝑖−1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖+1,𝑗) + (𝜓𝑖−1,𝑗+1 − 2𝜓𝑖,𝑗+1 +

𝜓𝑖+1,𝑗+1)] + 0(𝑘2) + 0(ℎ2)                                                                                     (28) 

 

i.e., 

 

𝐸𝑖,𝑗+1 = 𝛼𝜓𝑥𝑥(𝑥𝑖 , 𝑡𝑗+1) − 𝛽𝜓𝑡(𝑥𝑖 , 𝑡𝑗) = +0(𝑘2) + 0(ℎ2)                               (29) 

 

3.4 Stability analysis 
 

The stability theory is a crucial aspect of solving differential equations numerically and it 

is an important research area in the qualitative analysis of partial differential equations 

[4a,14]. Stability analysis refers to the behaviour of the numerical solution as the mesh or 

step size approaches zero, and the numerical solution for the PDE is said to be stable if 

small errors in the initial data or in the numerical approximation do not grow unbounded 

as the computation is continued [4a]. There are two primary considerations in choosing 

the mesh sizes, ℎ and 𝑘, for a finite difference solution of a PDE. One issue is the effect 

of the mesh sizes on the order of the truncation error for the method, the other important 

issue is the stability of the method [4a].  
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The primary difficulty with the explicit method is the stability condition, which requires 

that: 

 

𝑟 =
𝑐𝑘

2ℎ2
≤

1

2
  

 

A numerical method is said to be stable if errors that may be present at one stage of the 

computation do not grow as the process proceeds. We consider the explicit form as given 

in equation (22): 
 

𝜓𝑖,𝑗+1 = 𝑟𝜓𝑖+1,𝑗 + (1 − 2𝑟)𝜓𝑖,𝑗 + 𝑟𝜓𝑖−1,𝑗 − 𝑖𝑘𝑣𝑖  
 

Hence, expressing in matrix form, we have: 

 

[
 
 
 
 
 
 

1 − 2𝑟       𝑟                                               
   𝑟          1 − 2𝑟     𝑟                                    

⋱
               ⋱             

                               ⋱                ⋱                
                                  𝑟        1 − 2𝑟       𝑟    

                                                      𝑟           1 − 2𝑟]
 
 
 
 
 
 

  

[
 
 
 
 
 
 

𝜓(1, 𝑗)

𝜓(2, 𝑗)
⋮

𝜓(𝑖, 𝑗)
⋮

𝜓(𝑛 − 1, 𝑗)
𝜓(𝑛, 𝑗) ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝜓(1, 𝑗 + 1)

𝜓(2, 𝑗 + 1)
⋮

𝜓(𝑖, 𝑗 + 1)
⋮

𝜓(𝑛 − 1, 𝑗 + 1)
𝜓(𝑛, 𝑗 + 1) ]

 
 
 
 
 
 

                                                                                              (30) 

 

Observe that the matrix is tridiagonal and diagonally dominant. We shall use the Fourier 

method to check if the method is stable [15]. Assume that the numerical method admits a 

solution of the form [4a]: 

 

𝜓𝑖,𝑗 = 𝑎𝑗(𝜔)𝑒𝕚𝑖𝜔ℎ                                                                                         (31) 
 

where 𝜔 is the wave number and 𝕚 = √−1. 
 

Define: 

 

𝐺(𝜔) =
𝑎𝑗+1(𝜔)

𝑎𝑗(𝜔)
  

 

where 𝐺(𝜔) is the growth factor [16]. The von Neumann stability condition is given by: 

 
|𝐺(𝜔)| ≤ 1;       for    0 ≤ 𝜔ℎ ≤ 𝜋,  

where ℎ = ∆𝑥. 

   

It can be shown that the explicit method is stable if 𝜆 ≤ 1/2, which implies conditional 

stability. Thus, substituting equation (31) into equation (22), we get: 
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𝑎𝑗+1(𝜔)𝑒𝕚𝑖𝜔ℎ = 𝑟𝑎𝑗(𝜔)𝑒𝕚(𝑖+1)𝜔ℎ + (1 − 2𝑟)𝑎𝑗(𝜔)𝑒𝕚𝑖𝜔ℎ +

𝑟𝑎𝑗(𝜔)𝑒𝕚(𝑖−1)𝜔ℎ                                                                                                          (32) 

 

i.e., 

 

𝑎𝑗+1(𝜔)𝑒𝕚𝑖𝜔ℎ = 𝑎𝑗(𝜔)[𝑟𝑒𝕚(𝑖+1)𝜔ℎ + (1 − 2𝑟)𝑒𝕚𝑖𝜔ℎ + 𝑟𝑒𝕚(𝑖−1)𝜔ℎ]              (33) 

 

or, 

 
𝑎𝑗+1(𝜔)

𝑎𝑗(𝜔)
= 𝐺(𝜔) = 𝑟𝑒𝕚𝜔ℎ + (1 − 2𝑟) + 𝑟𝑒−𝕚𝜔ℎ                                                    (34) 

 

Thus, the von Neumann stability condition implies that: 

 

|𝐺(𝜔)| ≤ 1    ⇔         |𝑟𝑒𝕚𝜔ℎ + (1 − 2𝑟) + 𝑟𝑒−𝕚𝜔ℎ| ≤ 1  

                        ⇔      |(1 − 2𝑟) + 2𝑟𝑐𝑜𝑠(𝜔ℎ)| ≤ 1  

                        ⇔      |(1 − 2𝑟) + 2𝑟[1 − 2𝑠𝑖𝑛2 (
𝜔ℎ

2
)]| ≤ 1  

                        ⇔         |1 − 4𝑟𝑠𝑖𝑛2 (
𝜔ℎ

2
)| ≤ 1  

                        ⇔         0 ≤ 𝑟 ≤
1

2𝑠𝑖𝑛2(
𝜔ℎ

2
)
,  for  0 ≤ 𝜔ℎ ≤ 𝜋                       (35) 

 

It follows that 0 ≤ 𝑟 ≤ 1/2. 

 

Thus, the explicit finite difference method is stable if: 

 
𝑐𝑘

2ℎ2 ≤
1

2
    or    𝑘 ≤ ℎ2,   𝑐 = 1  

 

So if ℎ should be reduced by ½, then 𝑘 must be reduced by 
1

4
 in order to achieve stability.  

 

Therefore, for the Schrodinger equation,  

 
1

2
𝜓𝑥𝑥 + 𝑉(𝑥)𝜓 = 𝑖𝜓𝑡, (ℏ = 1)  

 

the explicit method requires that: 

 
𝑘

2ℎ2 ≤ 0.5   or  𝑘 ≤ 0.5(2ℎ2), i. e., 𝑘 ≤ ℎ2  

 

3.5 Implicit method 
 

The finite-difference representations of the partial derivatives in the Schrodinger equation 

are as given for the explicit method, except that the spatial derivative is approximated at 

step 𝑗 + 1, instead of step 𝑗. Thus, we have [4a]: 
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𝜓𝑡(𝑥𝑖 , 𝑡𝑗) =  
𝑖

𝑘
[𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗] + 0(𝑘)  

 

and 

 

𝜓𝑥𝑥(𝑥𝑖 , 𝑡𝑗+1) =  −
1

2ℎ2 [𝜓𝑖−1,𝑗+1 − 2𝜓𝑖,𝑗+1 + 𝜓𝑖+1,𝑗+1] + 0(ℎ2)  

 

Substituting into the PDE and simplifying, we find that the truncation error for the 

implicit is the same as for the explicit method, which gives, 0(ℎ2 + 𝑘). Now, to show 

that the implicit method is unconditionally stable, let us consider the implicit solution as 

contained in equation (23): 

 

𝜓𝑖,𝑗 = −𝑟𝜓𝑖−1,𝑗+1 + (1 + 2𝑟)𝜓𝑖,𝑗+1 − 𝑟𝜓𝑖+1,𝑗+1 + 𝑖𝑘𝑣𝑖  

 

The matrix representation of the equation is given below: 

 

[
 
 
 
 
 
 

1 + 2    − 𝑟                                              
−𝑟       1 + 2   − 𝑟                                       

⋱
               ⋱             

                               ⋱                ⋱                
                                 − 𝑟     1 + 2    − 𝑟  

                                                      − 𝑟       1 +  2  ]
 
 
 
 
 
 

  

[
 
 
 
 
 
 

𝜓(1, 𝑗 + 1)

𝜓(2, 𝑗 + 1)
⋮

𝜓(𝑖, 𝑗 + 1)
⋮

𝜓(𝑛 − 1, 𝑗 + 1)
𝜓(𝑛, 𝑗 + 1) ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝜓(1, 𝑗)

𝜓(2, 𝑗)
⋮

𝜓(𝑖, 𝑗)
⋮

𝜓(𝑛 − 1, 𝑗)
𝜓(𝑛, 𝑗) ]

 
 
 
 
 
 

                                                                                                     (36) 

 

The matrix is tridiagonal and diagonally dominant. As applicable to the explicit method, 

we shall also use the Fourier method to check if the method is unconditionally stable. So, 

assume that the numerical method admits a solution of the form [4a]: 

 

𝜓𝑖,𝑗 = 𝑎𝑗(𝜔)𝑒𝕚𝑖𝜔 , where 𝝎  is the wave number and 𝕚 = √−1 , and define: 

𝐺(𝜔) =
𝑎𝑗+1(𝜔)

𝑎𝑗(𝜔)
. 

 

The von Neumann stability condition is given by: 

 
|𝐺(𝜔)| ≤ 1,  ∀𝑘, ℎ;     where ℎ = ∆𝑥   and   𝑘 = ∆𝑡 

 

It can be shown that the implicit finite difference method is unconditionally stable if 
|𝐺(𝜔)| ≤ 1. Thus, substituting equation (31) into equation (23), we get [4a]: 
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𝑎𝑗(𝜔)𝑒𝕚𝑖𝜔ℎ = −𝑟𝑎𝑗+1(𝜔)𝑒𝕚(𝑖+1)𝜔ℎ + (1 + 2𝑟)𝑎𝑗+1(𝜔)𝑒𝕚𝑖𝜔ℎ −

𝑟𝑎𝑗+1(𝜔)𝑒𝕚(𝑖−1)𝜔ℎ  

 

which yields, 

 

𝑎𝑗(𝜔)𝑒𝕚𝑖𝜔ℎ = 𝑎𝑗+1(𝜔)[−𝑟𝑒𝕚(𝑖+1)𝜔ℎ + (1 + 2𝑟)𝑒𝕚𝑖𝜔ℎ − 𝑟𝑒𝕚(𝑖−1)𝜔ℎ]            (37) 

 

i.e., 

𝑎𝑗(𝜔)𝑒𝕚𝑖𝜔ℎ = 𝑎𝑗+1(𝜔)[−𝑟𝑒𝕚(𝑖+1)𝜔ℎ + (1 + 2𝑟)𝑒𝕚𝑖𝜔ℎ − 𝑟𝑒𝕚(𝑖−1)𝜔ℎ]            (38) 

 

or, 

 

𝑒𝕚𝑖𝜔ℎ = 𝐺(𝜔)[−𝑟𝑒𝕚(𝑖+1)𝜔ℎ + (1 + 2𝑟)𝑒𝕚𝑖𝜔ℎ − 𝑟𝑒𝕚(𝑖−1)𝜔ℎ]  

⇒           1 = 𝐺(𝜔)[(1 + 2𝑟) − 𝑟(𝑒𝕚𝑖𝜔ℎ + 𝑒−𝕚𝑖𝜔ℎ)]  

 

or, 

 

 𝐺(𝜔) =
1

(1+2𝑟)−2𝑟𝑐𝑜𝑠𝜔ℎ
≤ 1   𝑎𝑛𝑑  |𝐺(𝜔)| = |

1

1+2𝑟(1−𝑐𝑜𝑠𝜔ℎ)
| ≤ 1                (39) 

 

i.e., 

 
|𝐺(𝜔)| ≤ 1  

 

Thus, there is no restriction for 𝒓 , hence the implicit finite difference method is 

unconditionally stable. 

 

4 Crank-Nicolson Method 
 

The crank-Nicolson method is an implicit method that is widely used in numerical 

techniques for solving partial differential equations and has second-order accuracy [17]. 

The most important advantage of this method is that it is stable for any values of 𝒓, 

however, smaller values usually give better accuracy [4a,18]. It is observed that when the 

ratio of 
𝒄𝒌

𝟐𝒉𝟐 is greater than 0.5, the explicit method is found to be unstable. However, the 

implicit methods, including Crank-Nicolson do not have such a limitation as contained in 

our analysis above. The truncation error of Crank-Nicolson is slightly less than the 

general implicit method as contained in equation (29), given as 0(𝑘2 + ℎ2)[4𝑎]. 
 

Using the average of the centred difference at the forward time step 𝑗 + 1 and the time 

step 𝑗 gives: 

 

𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗 =
𝑖𝑘

2(2ℎ2)
[(𝜓𝑖−1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖+1,𝑗) + (𝜓𝑖−1,𝑗+1 − 2𝜓𝑖,𝑗+1 +

𝜓𝑖+1,𝑗+1)] − 𝑖𝑘𝑣𝑖                                                                                (40) 

 

Let 𝒓 =
𝒊𝒌

𝟐𝒉𝟐; then we have: 
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𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗 =
𝑟

2
[(𝜓𝑖−1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖+1,𝑗) + (𝜓𝑖−1,𝑗+1 − 2𝜓𝑖,𝑗+1 +

𝜓𝑖+1,𝑗+1)] − 𝑖𝑘𝑣𝑖                                                                                   (41) 

 

So, we have: 

 

−
𝑟

2
𝜓𝑖−1,𝑗+1 + (1 + 𝑟)𝜓𝑖,𝑗+1 −

𝑟

2
𝜓𝑖+1,𝑗+1 =

𝑟

2
𝜓𝑖−1,𝑗 + (1 − 𝑟)𝜓𝑖,𝑗 +

𝑟

2
𝜓𝑖+1,𝑗 − 𝑖𝑘𝑣𝑖                                                                                   (42) 

 

Now, to show that the implicit method is unconditionally stable, let us consider the 

matrix-vector representation of the process as given below [4a]: 

 

[
 
 
 
 
 
 
 
 
 
 1 − 𝑟        

𝒓

2
                                                   

   
𝒓

2
         1 − 𝑟       

𝒓

2
                                          

⋱
               ⋱             
                               ⋱                ⋱                

                                   
𝒓

2
        1 − 𝑟            

𝒓

2
  

                                                          
𝒓

2
              1 − 𝑟]

 
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
𝜓(1, 𝑗)

𝜓(2, 𝑗)

⋮
𝜓(𝑖, 𝑗)

⋮
𝜓(𝑛 − 1, 𝑗)

𝜓(𝑛, 𝑗) ]
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 1 + 𝑟       −

𝒓

2
                                                   

  −
𝒓

2
         1 + 𝑟      −

𝒓

2
                                           

⋱
               ⋱             
                               ⋱                ⋱                

                                     −
𝒓

2
      1 + 𝑟           −

𝒓

2
  

                                                         −
𝒓

2
              1 + 𝑟]

 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
𝜓(1, 𝑗 + 1)

𝜓(2, 𝑗 + 1)

⋮
𝜓(𝑖, 𝑗 + 1)

⋮
𝜓(𝑛 − 1, 𝑗 + 1)

𝜓(𝑛, 𝑗 + 1) ]
 
 
 
 
 
 

         (43) 

 

The matrix is tridiagonal and diagonally dominant. As obtained above when considering 

the general implicit method, we shall use the Fourier method to check if the method is 

unconditionally stable [4a].  

 

The von Neumann stability condition is given by: 

 
|𝐺(𝜔)| ≤ 1,  ∀𝑘, ℎ, 

 

where ℎ = ∆𝑥 and 𝑘 = ∆𝑡. 

 

It can be shown that the Crank-Nicolson finite difference method is unconditionally 

stable if  
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|𝐺(𝜔)| ≤ 1  

 

Substituting, we have: 

 

−
𝑟

2
𝑎𝑗+1(𝜔)𝑒𝕚(𝑖−1)𝜔ℎ + (1 + 𝑟)𝑎𝑗+1(𝜔)𝑒𝕚𝑖𝜔ℎ −

𝑟

2
𝑎𝑗+1(𝜔)𝑒𝕚(𝑖+1)𝜔ℎ    

 

=
𝑟

2
𝑎𝑗(𝜔)𝑒𝕚(𝑖−1)𝜔ℎ + (1 − 𝑟)𝑎𝑗(𝜔)𝑒𝕚𝑖𝜔ℎ +

𝑟

2
𝑎𝑗(𝜔)𝑒𝕚(𝑖+1)𝜔ℎ − 𝑖𝑘𝑣𝑖           (44) 

 

i.e., 

 

−
𝑟

2
𝐺(𝜔)𝑒𝕚(𝑖−1)𝜔ℎ + (1 + 𝑟)𝐺(𝜔)𝑒𝕚𝑖𝜔ℎ −

𝑟

2
𝐺(𝜔)𝑒𝕚(𝑖+1)𝜔ℎ   

=
𝑟

2
𝑒𝕚(𝑖−1)𝜔ℎ + (1 − 𝑟)𝑒𝕚𝑖𝜔ℎ +

𝑟

2
𝑒𝕚(𝑖+1)𝜔ℎ                       (45) 

 

⟹  

 

𝐺(𝜔) =
(1−𝑟)+𝑟/2(𝑒𝕚𝜔ℎ+𝑒−𝕚𝜔ℎ)

(1+𝑟)−𝑟/2(𝑒𝕚𝜔ℎ+𝑒−𝕚𝜔ℎ)
=  

(1−𝑟)+𝑟𝑐𝑜𝑠(𝜔ℎ)

(1+𝑟)−𝑟𝑐𝑜𝑠(𝜔ℎ)
=

1−𝑟[1−𝑐𝑜𝑠(𝜔ℎ)]

1+𝑟[1−𝑐𝑜𝑠(𝜔ℎ)]
                 (46) 

 

Thus, |𝐺(𝜔)| ≤ 1 for all 𝑟, and hence both general implicit and Crank-Nicolson finite 

difference methods have no restriction for 𝑟 and are unconditionally stable. However, the 

truncation error for the Crank-Nicolson method is 0(ℎ2 + 𝑘2), while that of the general 

implicit method is 0(ℎ2 + 𝑘)[4𝑎]. 
 

5 Conclusion 
 

It is observed from equation (33b) that by using the von Neumann stability condition, the 

explicit finite difference method is found to be conditionally stable if only r ≤ 0.5 and 

thus, if ℎ  should be reduced by ½, then 𝑘  must be reduced by 
1

4
 in order to achieve 

stability. Therefore, for the 1D Schrodinger equation for the quantum harmonic equation 

[4a]: 

 
1

2
𝜓𝑥𝑥 + 𝑉(𝑥)𝜓 = 𝑖𝜓𝑡,   (m = ℏ = 1)  

 

Thus, the explicit method requires that: 

 
𝑘

2ℎ2 ≤ 0.5    or   𝑘 ≤ 0.5(2ℎ2),   i. e., 𝑘 ≤ ℎ2  

 

On the other hand, the implicit and Crank-Nicolson finite difference methods for the 1D 

Schrodinger equation are found to be unconditionally Stable using the von Neumann 

stability condition as |𝐺(𝜔)| ≤ 1 for all 𝑟,  from equations (39) and (46). 

Considering Figs. 1, 2 and 4 above, we observe that r = 5.0,1.0 and 5.0 respectively, and 

thus the effect on the graphs are obvious while, in Fig. 3, 𝑟 = 0.5 which satisfies the 

stability condition of r ≤ 0.5. On the other hand, we observe that irrespective of the 

values of 𝑟 in Figs. 5, 6 and 7 which are 0.5, 5.0 and 50.0 respectively, all the graphs 

appear consistent, which concludes that the implicit and Crank-Nicolson finite difference 
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methods have no restriction for 𝑟 and are therefore unconditionally stable [4a]. However, 

the Crank-Nicolson has a better truncation error of 0(ℎ2 + 𝑘2) while the general implicit 

method has a truncation error of 0(ℎ2 + 𝑘). 
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