Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2739
Title: APPLICATION OF TWO-STEP CONTINUOUS HYBRID BUTCHER'S METHOD IN BLOCK FORM FOR THE SOLUTION OF FIRST ORDER INITIAL VALUE PROBLEM
Authors: EMMANUEL, Paul Amade
Keywords: Hybrid Butcher.s(HBM) Block Method
Region of Absolute Stability(RAS)
Multistep collocation(MC)
Issue Date: Jul-2013
Publisher: SAVAP International Journals
Series/Report no.: Vol.4 No 4;
Abstract: The two steps Hybrid Butcher’s Method was reformulated for applications in the continuous form. The process produces some schemes which were combined in order to form an accurate and efficient block method for solution of ordinary differential equations (Ode’s). The suggested approach eliminates requirements for a starting value and its speed proved to be up when computations with the Block Discrete schemes were used. The order of accuracy and stability of the block method is discussed and its accuracy established numerically.
URI: http://localhost:8080/xmlui/handle/123456789/2739
ISSN: L: 2223-9553, ISSN: 2223-9944
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
My publication with Prof. Awari.pdf232.47 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.