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Abstract 

Life-threatening diseases like tuberculosis have raised concerns in the medical and scientific 

communities. The damage-causing disease makes the scientific community employ the in-silico 

approach for design of new inhibitors that can inhibit or retard the havoc caused by this deadly 

disease. The insilico approach was used in this study to create a mathematical model with 

promising molecular properties, and receptors from the library were used to screen compounds 

and estimate the kinetic ability of the screened inhibitors that can cure this disease. 2D molecular 

properties evolved in the built model with high predictive ability. Three inhibitors x, y, and z 

emerged with better and higher molecular properties, the lowest binding energy (and higher 

binding affinity), and a better pharmacokinetic assessment compared to the template used in 

designing the effective compounds, with binding affinities of -15.56 kcal/mol, -18.51 kcal/mol, 

and -18.58 kcal/mol, respectively. Virtual screening of these compounds showed that they have 

good binding energy and excellent docking positions with the inhibiting potential of the receptor. 

                  



Also, pharmacokinetic predictions and ADMET, depict orally active ability of the inhibitors, 

possess good human intestinal absorption, and violate none of the RO5 as potential drug candidates 

to cure this disease. Hence, further laboratory tests are recommended for these to determine their 

toxicities and biological assays. 

Keywords: Rational design, Molecular properties, ADMET, Docking, QSAR 

Introduction 

An incurable, deadly disease called tuberculosis (TB) has been known for causing havoc and 

leading to a high death rate in society. In the world's population, TB affects above 2%; as such, 

perpetual research is allowed every now and then. Meanwhile, about two million people died as a 

result of TB between 2019 and 2020. According to records, about 15 million people worldwide 

are reportedly ill as an outcome of this contagious disease [1]. Lungs are the main target of this 

growing human disease [2]. Little or no appetite, weight loss, fever, and coughing are among the 

signs associated with this disease. 

TB has developed resistance to several medicines, among them isoniazid rifampicin, and 

ethambutol, all of which are related to the transformation of genes. Most of the drugs are toxic and 

have side effects, which invariably contribute to the challenges caused by this disease. Also, 

inherent in this disease is hepatitis, which is another life-threatening disease in the world [3, 5]. To 

combat the atrocities caused by this disease, drugs have been produced using outdated methods 

that are inefficient and costly. Searching for methods that are cost-effective and less expensive 

with little or no side effects remains an area where medicinal scientists are investing efforts in 

finding effective TB agents against M. tuberculosis [6, 7]. 

  

                  



Heterocyclic triazole and its derivatives possessed inherent properties with the ability to hinder or 

cure this disease, especially when the structures were related to the biological activities of the 

structures [3, 6, 9]. These bioactive chemical compounds have therapeutic ability embedded in 

their structures, which can be very instrumental in rational drug design [6, 10]. These triazoles 

possessed other ill-ness abilities such as malarial, tuberculosis, analgesic, and were very 

efficacious with anti-TBS activity [4–14]. 

Computational-Aided Drug Design (CADD) has been very instrumental in the research 

community and is known for its ability to yield positive results, especially in in silico drug design. 

The in-silico methods embedded in computational drug design approaches reduce the cost of drug 

design and analysis before production and further clinical testing [3]. Investigation and exploration 

of potential inhibitors carried out under simulation techniques, after successful application, 

normally give good results. Additionally, computational methods have been very useful tools in 

the exploitation of potential therapeutic oxadiazole inhibitors [3, 15, 16]. 

To design hypothetical compounds with great therapeutic ability that can cure or inhibit the 

atrocity caused by tuberculosis, a promising method is germane in order to successfully meet-up 

with the preparation and design of compounds with better activity. A lead compound emerged 

after interactions of experimental compounds with a protein target of interest; the compound with 

the smallest negative docking value was chosen as a template and lead compound to design several 

hypothetical compounds; this landmark was achieved with the aid of bioinformatics approaches 

and yielded excellent results [17, 18]. Some of the computational drug design methods used to 

create drugs with high potency and low toxicity are QSAR (Quantitative Structure-Activity 

Relationship) techniques and toxicity predictions [3].  

                  



Some factors have been responsible for the failure of most drugs at the clinical stages, such as 

absorption ability and insidious and bad kinetic potential. The ADMET method have recorded 

successful in forecasting these clinical failure factors. In-silico methods have been reported and 

are known for their ability to predict potential drug candidates in the human living system by 

employing modeling and simulation techniques. This alternative method has proven over the years 

to be outstanding, stand the test of time, and be cost- and time-effective, possess the ability to 

screen millions of compounds within a short time and rarely experience clinical failure when the 

methods are properly applied. Hence, this research aimed at utilizing an in-silico method to build 

a model with highly predictive ability using observed reported activities as an anti-Tuberculosis 

agent via multi-linear regression, theoretical compounds were design, carry out simulation 

screening, predict the ADMET characteristics, and druglikeness of the theoretical inhibitors. 

Material and Methods 

Dataset generation 

Figure 1 and Table 1 are respectively backbone of chemical compound and triazole derivatives. 

The dataset experimental data were previously reported in the literature [4]. 

 

 

Figure 1:  backbone of triazole derivatives  

Table 1: Experimental triazole derivatives with their identity 

S/

N 

R1 R2 R3 Laboratory observed 

values 

(pBA) 

1 a 

  
 

5.6055 

                  



S/

N 

R1 R2 R3 Laboratory observed 

values 

(pBA) 

2 

 

 

 

5.381 

3 a 

 

  

5.8857 

4 a 

 

 
 

4.8851 

5a 
 

H H 5.6104 

6 

 

CH3 H 7.9686 

7  

 
 

 

6.6228 

8  

   

6.0461 

9 a H 

 

 

6.25 

10 CH3 

 

 

7.2921 

11 

  

H 6.6228 

12  

  

H 6.8045 

13 

  

H 7.4068 

14 

  

 
6.258 

                  



S/

N 

R1 R2 R3 Laboratory observed 

values 

(pBA) 

15 

a  
 

 
7.9402 

16 CH3 

 

H 7.7594 

17 CH3 

 

H 6.2958 

18 

 
 

H 5.8258 

19 

  

H 7.5184 

20 

 

 
 

5.5163 

21 

 

H 

 

6.2768 

22 

 

CH3 

 

5.6918 

23 

 
 

 
6.1665 

24 

a  
 

 
7.9402 

25  

 
 

 
7.2447 

26 

 
 

 
7.5378 

27 

a 

H 
  

7.8219 

28 

a 

CH3 
  

7.8546 

29 

a  
  

5.1504 

30 

 

  
6.1827 

                  



S/

N 

R1 R2 R3 Laboratory observed 

values 

(pBA) 

31  

 

  
7.202 

32 

 
  

5.8884 

33 

a 

 

H H 5.4781 

34 

a  
 

H 4.7861 

35 

 
 

H 6.7355 

36 

 

H 

 

7.7243 

37 

 

H 

 

7.1866 

38  

 

H 

 

7.1927 

39 

 

H 

 

6.7506 

40  

 

CH3 

 

7.8546 

 

 

 

Generation of molecular properties  

Optimized of all the chemical structures were carried out based on the method previously reported 

and molecular properties were generated [17]. 

Data treatment and operation  

                  



The data undergo filtration and division into model building set of seventy percent and validation 

set of thirty percent with the aid of algorithm called Kennard and Stone in order to build 

mathematical linear regression expression called model that can be used to predict the activity of 

the hypothetically designed compounds [14].  

 

Development of a model  

A bioinformatics software called Material studio, V 8.0 was very instrumental in the building of a 

mathematical model. The filtered molecular properties were imported into the interphase of the 

software. Embedded in the material studio is the Genetic function Algorithm with the ability to 

build several model at a time with their statistical parameters. The best model was chosen based 

on the statistical parameters, predictive ability and robustness power.  

 

Domain of Applicability (DA) 

This domain gives a boundary of ±3 to the developed Model employing the theoretical expression 

in equation 1. Also in this domain, there were hat matrix (k) to remove unwanted chemical 

compounds.  

ki = Ma(𝑀𝑅𝑀)−1 𝑁𝑎
𝑇           (1) 

Ma, matrix a with summation of molecular properties. In addition, equation 2 show the theoretical 

expression for calculating hat matrix [6].  

𝑘∗ = 3 (
𝑝 + 1

𝑣
)         (2) 

 p  summation of molecular properties in the developed model while, v number of chemical 

compounds in the model building sets [3, 6]. 

 

Randomization test 

Y-Randomization evaluation is affirmation approach as previously reported by [3, 19, 20]. The 

theoretical generated mathematical model emanated by keeping the molecular properties constant 

while varying the experimental data. For the built model to be ascertain of it quality, that it was 

not gotten accidentally, R2 and Q2 must be very low as previously reported, also, coefficient of Y-

randomization must be greater than or equal to 0.5 [3, 20, 21]. Expression three is an equation 

which must be satisfied for a robust model.  

c𝑅𝑝
2 = 𝑅 ×  𝑖[𝑅2  −  (𝑅𝑟)2]2𝑖         (3) 

                  



 

Steps for in-silico screening 

After the construction of model, protein target of the inhibitors were downloaded from the protein 

data bank with an ID code of 3IFZ through resb.org. Figure 2 show the structure of the prepared 

receptor. The protein was prepared by employing the AutoDock tool embedded in PyRx software 

as previously reported. [3, 22-24]. To commence the simulation, the x, y, z axes of the binding site 

grid was set at 50 × 50 × 50 at a spacing of 0.595Å.  All other simulation procedures followed the 

approach reported by [22, 25, 26]. 

 

 

 

Figure 2. Crystal structure of DNA gyrase 

  

                  



Prediction of ADME-Tox and pharmacokinetics assessment 

Majority of the drugs fail at the clinical stage due to absent/in-accurate pharmacokinetics 

predictions. A web-based software called SwissADME was utilized to predict the druggability of 

the design compounds in order to ascertain their ability as drug candidates, as previously reported 

in a research carried out [6].  

Results  

QSAR interpretation studies  

Regression analysis 

The model was excellently built using analogues of triazole-1, 2, 4 as a result of their inherent 

therapeutic ability. Four highly predictive molecular properties with anti-tuberculosis activities as 

reported in Table 2 while Table 3 show the inborn properties of these molecular properties.  

 

Developed mathematical equation 

pBA  =  - 1.2762(MATS7s) - 2.7874(SM1_DzZ) - 3.8482(SpMin4_Bhv)+ 0.0207(TDB3v)+ 

0.1488(RDF70v) + 1.5467 

 

 

Table 4 show the statistical parameters and their threshold values of the built model. Also, Y-

randomization (c𝑅𝑝
2 = 0.8433) of the developed model.  

Table 5 show that validity and potency of the selected molecular properties. Variance Inflation 

Factor (VIF) is another strong statistical parameters computed for each of the descriptor, as 

observed in Table 5 [3]. 

  

Table 5 is the mean effect (ME) and contribution of each of the molecular properties in the built 

model.  

 

Figure 3 is a plot of observed activity against predicted activity of the internal validation while 

Figure 4 is a plot of observed activity versus predicted activity of the external.  

 

                  



Figure 5 shows the residual plot of the activities proposed by the built model.  Figure 6 show the 

William’s plot with leverage (k*)value of 0.64 and a limit of ±3.  

 

 

Table 2. Molecular properties for the dataset 

Struct

ure 

ID  

Molecular properties Theoretica

l (T) 

value 

Obser

ved 

(O)  

value 

(T) - 

(O) 

Lever

age 

Model building set    

 MAT

S7s 

SM1_

DzZ 

SpMin4_

Bhv 

TDB3

v 

RDF7

0v 

    

2 0.002

6 

1.4821 1.5622 658.7

772 

2.049

8 

5.3645 4.3810 0.98

35 

0.3642 

6 -

0.118

2 

1.7006 1.3315 746.2

645 

3.169

7 

7.7780 7.9686 -

0.19

06 

0.2976 

7 -

0.051

6 

2.1607 1.7352 685.7

303 

13.25

08 

5.1022 5.6228 0.52

06 

0.4757 

8 -

0.133

6 

2.5578 1.7289 696.3

924 

24.09

59 

5.9593 6.0461 -

0.08

68 

0.1820 

10 -

0.246

4 

1.9107 1.6606 661.5

998 

22.58

05 

7.2229 7.2921 -

0.06

92 

0.1817 

11 -

0.072

6 

1.9107 1.7655 633.9

043 

24.84

31 

6.3599 6.6228 -

0.26

29 

0.1933 

12 0.124

0 

2.5536 1.7727 695.4

821 

28.01

28 

6.0378 6.8045 -

0.76

67 

0.1643 

13 -

0.117

9 

2.1607 1.7717 688.6

992 

26.44

88 

7.0721 7.4068 -

0.33

47 

0.1981 

14 -

0.176

5 

2.5578 1.7713 699.4

567 

26.61

19 

6.2889 6.2580 0.03

09 

0.3157 

16 0.055

1 

1.0536 0.9593 621.0

873 

0.290

6 

7.7687 7.7594 0.00

93 

0.1723 

17 -

0.177

3 

1.0536 1.1662 572.3

149 

1.774

1 

6.4787 6.2958 0.18

29 

0.2515 

                  



Struct

ure 

ID  

Molecular properties Theoretica

l (T) 

value 

Obser

ved 

(O)  

value 

(T) - 

(O) 

Lever

age 

Model building set    

 MAT

S7s 

SM1_

DzZ 

SpMin4_

Bhv 

TDB3

v 

RDF7

0v 

    

18 0.385

9 

1.6964 1.4612 732.5

999 

3.713

3 

6.4449 5.8258 0.61

91 

0.1566 

19 0.076

6 

1.3036 1.3745 712.3

987 

2.841

2 

7.7195 7.5184 0.20

11 

0.4540 

20 -

0.331

7 

1.9107 1.6962 633.2

209 

15.53

45 

5.5578 5.5163 0.04

15 

0.5045 

21 0.002

0 

1.0536 1.3161 591.6

153 

1.210

8 

5.9893 6.2768 -

0.28

75 

0.5295 

22 0.195

0 

1.0536 1.3165 616.2

699 

2.091

5 

6.3837 5.6918 0.69

19 

0.3605 

23 -

0.231

1 

1.0536 1.3168 582.2

291 

2.036

9 

6.2125 6.1665 0.04

60 

0.7021 

25 0.129

0 

1.3036 1.4508 688.9

992 

2.987

0 

6.8955 7.2447 -

0.34

92 

0.5068 

26 0.016

4 

1.7006 1.3636 712.3

814 

3.612

8 

6.8461 6.5378 0.30

83 

0.3539 

30 0.227

3 

1.6964 1.5063 707.5

776 

4.175

0 

6.0236 6.1827 -

0.15

91 

0.3163 

31 0.018

0 

1.3036 1.4669 693.4

308 

3.452

6 

7.1364 7.2020 -

0.06

56 

0.6176 

32 -

0.060

1 

1.7006 1.3634 717.2

290 

3.290

1 

6.9970 5.8884 1.10

86 

0.1701 

35 -

0.821

3 

1.5536 1.2988 621.1

500 

5.250

5 

6.9265 6.7355 0.19

10 

0.2999 

36 -

0.135

3 

2.1964 1.3598 773.1

185 

5.393

0 

7.1966 7.7243 -

0.52

77 

0.2200 

37 -

0.234

7 

1.8036 1.3662 754.5

958 

5.174

6 

7.9772 7.1866 0.79

06 

0.1553 

                  



Struct

ure 

ID  

Molecular properties Theoretica

l (T) 

value 

Obser

ved 

(O)  

value 

(T) - 

(O) 

Lever

age 

Model building set    

 MAT

S7s 

SM1_

DzZ 

SpMin4_

Bhv 

TDB3

v 

RDF7

0v 

    

38 -

0.266

8 

2.2006 1.3459 789.7

752 

5.088

3 

7.7063 7.1927 0.51

36 

0.4609 

39 0.035

0 

1.0536 1.3093 622.7

128 

4.643

4 

7.1290 6.7506 0.37

84 

0.3584 

40 0.218

6 

1.0536 1.2840 686.1

800 

1.051

7 

7.7734 7.8546 -

0.08

12 

0.7114 

Test set    

1 0.184

1 

1.6964 1.4768 703.6

135 

4.050

8 

6.0916 5.6055 0.48

61 

0.2838 

3 0.000

8 

1.0536 1.3319 584.7

233 

4.794

9 

6.3206 5.8857 0.43

49 

0.2523 

4 -

0.167

0 

1.4821 1.5640 618.5

815 

7.542

5 

5.5581 4.8851 0.67

30 

0.4252 

5 -

0.252

7 

1.9107 1.6653 651.0

893 

13.78

45 

5.6859 5.6104 0.07

55 

0.1522 

9 -

0.167

3 

1.0536 1.2914 619.5

964 

1.975

7 

6.9944 6.2500 0.74

44 

0.4403 

15 -

0.002

0 

1.0536 1.2318 625.8

344 

4.912

7 

7.5793 7.9402 -

0.36

09 

0.1877 

24 -

0.458

1 

1.0536 1.2807 634.4

842 

1.904

9 

7.7049 7.9402 -

0.23

53 

0.3766 

27 -

0.032

7 

1.0536 1.2777 669.1

703 

1.282

5 

7.8001 7.8219 -

0.02

18 

0.1526 

28 -

0.138

1 

1.0536 1.3086 694.5

662 

3.150

3 

8.6202 7.8546 0.76

56 

0.6140 

29 -

0.009

0 

0.4286 1.0936 550.5

198 

0.357

3 

7.6226 5.1504 2.47

22 

0.4382 

                  



Struct

ure 

ID  

Molecular properties Theoretica

l (T) 

value 

Obser

ved 

(O)  

value 

(T) - 

(O) 

Lever

age 

Model building set    

 MAT

S7s 

SM1_

DzZ 

SpMin4_

Bhv 

TDB3

v 

RDF7

0v 

    

33 -

0.171

8 

1.9107 1.6674 657.0

710 

14.04

39 

5.7372 5.4781 0.25

91 

0.2169 

34 -

0.332

9 

2.5143 1.3369 731.9

698 

5.094

70 

5.7533 4.7861 0.96

72 

0.8236 

Residual= (T) - (O)  

 

Table 3: Designation of evolved molecular properties utilized in model building 

Identification Name of molecular properties Molecular properties 

Identity 

Dimension 

1 Moran-autocorrelation lag-7 / 

weighted by I-state 

MATS7s    2D 

2 Spectral moment of order 1 from 

Barysz matrix / weighted by 

atomic number 

SM1_DzZ    2D 

3 Smallest absolute eigenvalue of 

Burden modified matrix-n 4 / 

weighted by relative van der 

Waals volumes 

SpMin4_Bhv   2D 

4 3D topological distance based 

autocorrelation - lag 3 / weighted 

by van der Waals volumes 

TDB3v   3D 

5 Radial distribution function - 070 

/ weighted by relative van der 

Waals volumes 

RDF70v   3D 

 

 

  

                  



 

Table 4. Developed model threshold value 

S/NO Validation Parameters Formula Threshold Model  

 

Internal Validation 

1 Friedman Lack of fit 

(LOF) 

𝑆𝐸𝐸

(1 −  
𝑤 + 𝑞 ×  𝑗

𝑁 )
2 

Significantly 

low 

0.9905 

2 R2 

1 −  [
∑ (𝑌𝑜𝑏𝑠  − 𝑌𝑝𝑟𝑒𝑑

)
2

∑ (𝑌𝑜𝑏𝑠  − 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
)

2] 

R2 > 0.6 0.7760 

3 adjR
2 𝑅2  − 𝑃 (𝑁 − 1)

𝑁 − 𝑝 + 1
 

Radj
2 > 0.6 0.7251 

4 𝑄𝑐𝑣
2    

1 −  [
∑(𝑌𝑝𝑟𝑒𝑑  − 𝑌𝑜𝑏𝑠

)
2

∑ (𝑌𝑜𝑏𝑠  − 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
)

2] 

Q2 > 0.6 0.6766 

5 Significant Regression   Yes 

6 Significance-of-

regression F-value 

  15.25 

7 Critical SOR F-value 

(95%) 
∑(𝑌𝑝𝑟𝑒𝑑  − 𝑌𝑜𝑏𝑠

)
2

p

∑(𝑌𝑝𝑟𝑒𝑑  − 𝑌𝑜𝑏𝑠
)

2

N − p − 1
⁄  

F(test)

> 2.09 

2.6840 

8 Replicate points   0 

9 Computed observed 

error 

  0 

10 Min expt. error for non-

significant LOF (95%) 

  0.3763 

 

Model Randomization 

 

11 Average of the 

correlation coefficient 

for randomized data 

( �̅�𝑟) 

 R̅ < 0.5 0.3493 

12 Average of 

determination coefficient 

for randomized data 

(�̅�𝑟
2)  

 �̅�𝑟
2 < 0.5 0.1373 

13 Average of  leave one 

out cross-validated 

 �̅�𝑟
2 < 0.5 -0.3038 

                  



S/NO Validation Parameters Formula Threshold Model  

determination coefficient 

for randomized data ( �̅�𝑟
2 

) 

14 Coefficient for Y-

randomization (c𝑅𝑝
2) R2 ×  (1 − √|R2 − R̅r

2| ) 
cRp

2 > 0.6 0.8433 

 

External validation 

 

15 /𝑟0
2 − 𝑟′

0
2

/ 

 

 <0.3 0.1638 

16 𝑟2 − 𝑟0
2

𝑟2
 

 

 <0.1 0.0072 

17 𝑟2 − 𝑟′
0
2

𝑟2
 

 

 <0.1 0.0212 

18 Rtest
2  𝑅𝑡𝑒𝑠𝑡

2

= 1 

−  
∑(𝑌𝑝𝑟𝑒𝑑𝑡𝑒𝑠𝑡  −  𝑌𝑜𝑏𝑠𝑡𝑒𝑠𝑡

)
2

∑(𝑌𝑝𝑟𝑒𝑑𝑡𝑒𝑠𝑡  −  𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 )
2 

> 0.6 0.6548 

 

 

 

Table 5. Statistical assessment of the emanated molecular properties 

 Molecular 

properties 

MATS7

s 

SM1_Dz

Z 

SpMin4_B

hv 

TDB3

v 

RDF70

v 

Mean 

Effec

t 

(ME) 

VIF 

MATS7s 1 
    

0.014

9 

1.629

1 

SM1_DzZ -0.2249 1 
   

-

0.898

2 

2.731

6 

                  



SpMin4_Bhv -0.0384 0.7462 1 
  

-

1.083

1 

2.082

7 

TDB3v 0.1454 0.5599 0.1767 1 
 

2.725

4 

2.291

5 

RDF70v -0.1903 0.7757 0.08557 0.0598 1 0.251

0 

1329

7 

 

 

 
Figure 3. Plot of theoretical value against 

observed value  

 
Figure 4. Plot of theoretical value against 

observed value 
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Figure 5. Plot of standardized residual value against observed value. 

 

   

Figure 6. Plot of the standardized residuals vs. the leverage value. 
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ME analysis is the pivoted point at which the excellent and promising compounds were designed 

[22]. Figure 7 show the backbone of the structure used in designing new compounds with the 

highest ME value as shown in Table 5.  

Computational design of new anti-tubercular compounds via Ligand-based 

 

 

A 
 

B 

Figure 7: (A) shows the structure of the lead molecule (6). (B) Show the structural template for 

the lead molecule. Figure 8 show the three theoretical compounds designed after the employment 

of the template above, namely; x, y, and z. Table 6 show the predicted activities by the proposed 

model.  

 

                                x 
 

 

                                   y 
 

 

 

z 

 
 

                  



Fig. 8: Chemical structural of the designed compounds x, y and z  

Table 6: Theoretical value of hypothetically designed inhibitors 

Identit

y 

Structure of 

theoretical inhibitors 

Theoretical molecular properties Theore

tical 

value 

(pBA) 

Lever

age MAT

S7s 

SM1_

DzZ 

SpMin4

_Bhv 

TDB

3v 

RDF

70v 

Lead 

Comp

ound 

(ID = 

6) 
 

-

0.118

2 

1.700

6 

1.3315 746.2

645 

3.16

97 

7.9686 0.297

6 

x 

 
 

-

0.124

3 

1.529

1 

1.2198 628.3

6 

13.6

212 

8.3136 0.336

2 

y 

 

-

0.167

6 

1.485

3 

1.1946 623.4

5 

13.2

016 

8.4068 0.284

1 

z 

 

-

0.183

3 

1.327

1 

1.1623 621.5

2 

12.2

393 

8.7450 0.351

7 

Simulation analysis 

Table 7 show the docking scores of the theoretically designed inhibitors, x, y, and z with their 

respective scores of -15.56 kcal/mol, -18.58 kcal/mol, and -18.51 kcal/mol which shows their 

binding interactions.  Figures 9, 10, 11, 12, and 13 show the hydrogen bonds and hydrophobicity 

of the template and designed inhibitors.  

 

 

Table 7: Simulation docking interaction 

Ligand CHBI HI BA 

(kcal/mol

) 

AA CR BL (Å) AA RT CR BL (Å) 

Lead 

Compound 

(ID = 6) 

Gln10

1 

H-

Donor 

2.2965 Trp10

3 

Pi-

Sulfur 

Pi-

Orbital

s 

5.2031 -12.41 

                  



Ligand CHBI HI BA 

(kcal/mol

) 

AA CR BL (Å) AA RT CR BL (Å) 

(Template) Trp103 H-

Donor 

2.2855      

Ser118 H-

Accepto

r 

2.4391      

Asp12

2 

H-

Accepto

r 

2.9977      

Asp12

2 

H-

Accepto

r 

2.2261      

Designed  

Compound 

x 

Gln10

1 

H-

Donor 

2.5036 Trp10

3 

Pi-

Sulfur 

Pi-

Orbital

s 

5.2182 -15.56 

Trp103 H-

Donor 

2.1106      

Ser118 H-

Accepto

r 

2.2327      

Asp12

2 

H-

Accepto

r 

2.1650      

Pro119 H-

Accepto

r 

2.2034      

Val278 H-

Accepto

r 

2.1766 
 

    

Designed  

Compound 

y 

Trp103 H-

Donor 

2.3190 Trp10

3 

Pi-

Sulfur 

& Pi-Pi 

T-

shaped 

Pi-

Orbital

s 

5.5813 -18.58 

Gly12

0 

H-

Accepto

r 

2.3192      

                  



Ligand CHBI HI BA 

(kcal/mol

) 

AA CR BL (Å) AA RT CR BL (Å) 

Gly12

0 

H-

Accepto

r 

2.5560      

Trp103 H-

Accepto

r 

2.9555      

Trp103 H-

Accepto

r 

2.4947      

Pro119 H-

Accepto

r 

2.3494      

Val278 H-

Accepto

r 

2.7831      

Designed  

Compound 

z 

Trp103 H-

Donor 

2.5294

4 

Trp10

3 

Pi-

Sulfur 

& Pi-Pi 

T-

shaped 

Pi-

Orbital

s 

5.5033

7 

-18.51 

Gly12

0 

H-

Accepto

r 

2.8383

8 

     

Ser118 H-

Accepto

r 

2.6302

5 

     

Gly12

0 

H-

Accepto

r 

2.1437

6 

     

Pro119 H-

Accepto

r 

2.3107

5 

     

Val278 H-

Accepto

r 

2.8450

2 

     

                  



Ligand CHBI HI BA 

(kcal/mol

) 

AA CR BL (Å) AA RT CR BL (Å) 

Trp103 H-

Accepto

r 

2.5764

9 

     

Reference 

compound 

(Quinolone

) 

His280 H-

Donor 

2.6069 Trp10

3 

Pi-Pi 

T-

shaped 

Pi-

Orbital

s 

4.8661 -13.22 

Pro119 H-

Accepto

r 

2.2908 Gln27

7 

Amide

-Pi 

Stacke

d 

Pi-

Orbital

s 

3.9351  

Val278 H-

Accepto

r 

2.6480 Gln27

7 

Amide

-Pi 

Stacke

d 

Pi-

Orbital

s 

4.0396  

AA =Amino acid, CR =Chemistry role, BL = Bond lenght, RT=Reaction type, BA=Binding affinity, HI=Hydrophobic Interaction, CHBI= 

Conventional Hydrogen Bond Interaction 
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Fig. 9: 3D and 2D view interactions of template compound (compound 6) with the receptor. H-

bonding and hydrophobic bonding interactions view of template compound. 
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Fig. 10: 3D and 2D view interactions of x compound (theoretical designed) with the receptor. H-

bonding and hydrophobic bonding interactions view of x compound. 
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Fig. 11: 3D and 2D view interactions of y compound (theoretical designed) with the receptor. H-

bonding and hydrophobic bonding interactions view of y compound. 
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C 
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Fig. 12: 3D and 2D view interactions of z compound (theoretical designed) with the receptor. H-

bonding and hydrophobic bonding interactions view of z compound. 

                  



A 

 

B 

 

C 

 

D 

 
 

Fig. 13: 3D and 2D view interactions of referenced compound with the receptor. H-bonding and 

hydrophobic bonding interactions view of referenced compound. 

Prediction of ADME-Tox and pharmacokinetics assessment 

The Pfizer rule has been utilized to evaluate the drug likeness of potential drug candidates in term 

of bioavailability. All the Pfizer rule fall within threshold value as shown in Table 8 [28]. The 

kinetics assessment of designed inhibitors as shown in Table 8. Lastly, still on Table 8, medicinal 

chemistry parameters (PAINS, Brenk and Leadlikeness) of the designed compounds have their 

threshold value fall within limit while the template and referenced compounds have their limit 

outside the threshold value.  

Figure 14 show the radar bioavailability of the designed bioactive compounds x, y and z [30]. 

Table 8: Predicted ADME-Tox characteristics and kinetics evaluation 

                  



Parameters Lead 

Compound 

(ID = 6) 

(Template) 

Compound Designed 

x y z Reference 

compound 

(Quinolone) 

Descriptors 

Properties 

 

C6H7N3O2S C9H14N6O2S C10H16N6O2S C11H18N6O

2S 

C9H7NO 

MW < 500 

g/mol 

185.20g/mol 270.31g/mol 284.34g/mol 298.36g/m

ol 

145.16g/mol 

Num. heavy 

atoms 

12 18 19 20 11 

Num. arom. 

heavy atoms 

5 10 10 10 10 

Fraction Csp3 0.33 0.56 0.60 0.64 0.00 

Num. rotatable 

bonds 

2 6 6 6 0 

nHBA ≤ 10 4 5 6 6 1 

nHBD ≤ 5 1 2 2 2 1 

Molar 

Refractivity 

42.22 63.29 68.10 72.79 44.57 

20  < (TPSA) < 

130 Å2 

84.09Å² 125.66Å² 125.66Å² 125.66Å² 32.86Å² 

 

Lipophilicity 

     

iLOGP ≤ 5 0.56 0.31 1.01 0.76 1.56 

XLOGP3  0.07 0.80 1.13 1.68 1.26 

WLOGP  0.68 0.97 1.53 1.71 1.53 

MLOGP  -0.62 -0.92 -0.61 -0.32 1.65 

SILICOS-IT  0.69 1.22 1.39 1.59 2.64 

Consensus Log 

Po/w  

0.28 0.48 0.89 1.08 1.73 

 

Water 

Solubility 

     

Log S (ESOL)  -1.21 -2.04 -2.31 -2.72 -2.21 

Solubility 1.15e+01mg/

ml ; 6.18e-

02mol/l 

2.49e+00mg/

ml ; 9.22e-

03mol/l 

1.40e+00mg/

ml ; 4.92e-

03mol/l 

5.66e-

01mg/ml; 

1.90e-

03mol/l 

9.02e-

01mg/ml ; 

6.22e-

03mol/l 

Class  Very soluble Soluble Soluble Soluble Soluble 

                  



Parameters Lead 

Compound 

(ID = 6) 

(Template) 

Compound Designed 

x y z Reference 

compound 

(Quinolone) 

Log S (Ali)  -1.39 -3.02 -3.36 -3.93 -1.55 

Solubility 7.55e+00mg/

ml ; 4.08e-

02mol/l 

2.58e-

01mg/ml ; 

9.55e-

04mol/l 

1.23e-

01mg/ml ; 

4.34e-04 

mol/l 

3.48e-

02mg/ml ; 

1.17e-

04mol/l 

4.10e+00mg/

ml ; 2.83e-

02mol/l 

Class  Very soluble Soluble Soluble Soluble Very soluble 

Log S 

(SILICOS-IT)  

-1.66 -3.78 -3.80 -4.19 -3.58 

Solubility 4.01e+00mg/

ml ; 2.17e-

02mol/l 

4.51e-

02mg/ml ; 

1.67e-

04mol/l 

4.47e-

02mg/ml ; 

1.57e-

04mol/l 

1.94e-

02mg/ml ; 

6.52e-

05mol/l 

3.78e-

02mg/ml ; 

2.61e-

04mol/l 

Class  Soluble Soluble Soluble Soluble Soluble 

 

Pharmacokinet

ics 

     

GI absorption  High High High High High 

BBB permeant  No No No No Yes 

Log Kp (skin 

permeation)  

-7.38cm/s -7.38cm/s -7.23cm/s -6.93cm/s -6.29cm/s 

 

Druglikeness 

     

Lipinski  Yes; 0 

violation 

Yes; 0 

violation 

Yes; 0 

violation 

Yes; 0 

violation 

 

Yes; 0 

violation 

Ghose  No; 1 

violation: 

#atoms < 20 

Yes Yes Yes 

 

 

No; 2 

violations: 

MW < 160, 

#atoms < 20 

Veber  Yes Yes Yes Yes Yes 

Egan  Yes Yes Yes Yes Yes 

Muegge  No; 1 

violation: 

MW < 200 

Yes Yes Yes 

 

No; 1 

violation: 

MW < 200 

Bioavailability 

Score  

0.55 0.55 0.55 0.55 0.55 

                  



Parameters Lead 

Compound 

(ID = 6) 

(Template) 

Compound Designed 

x y z Reference 

compound 

(Quinolone) 

 

Medicinal 

Chemistry 

     

PAINS  0 alert 0 alert 0 alert 0 alert 0 alert 

Brenk  1 alert: triple 

bond 

0 alert 0 alert 0 alert 0 alert 

Leadlikeness  No; 1 

violation: 

MW < 250 

Yes Yes Yes No; 1 

violation: 

MW < 250 

Synthetic 

accessibility  

2.67 3.08 3.18 3.29 1.36 

MW= Molecular weight,  nHBD  = number of hydrogen bond donor,  nHBA = number hydrogen bond acceptor 

 

 

 
Lead compound 6 (Template) 

 

Designed inhibitor x 

                  



 
Designed inhibitor y 

 
Designed inhibitor z 

 
Referenced compound (Quinolone) 

 

Fig. 14. Radar Bioavailability of the template, designed inhibitors and reference compound 

 

Discussion  

QSAR interpretation studies  

Regression analysis 

The model was excellently built using analogues of triazole-1, 2, 4 as a result of their inherent 

therapeutic ability. Four highly predictive molecular properties with anti-tuberculosis activities as 

reported in Table 2 emanated in the model (MATS7s, SM1_DzZ, SpMin4_Bhv, TDB3v and 

RDF70v). While Table 3 show the inborn properties of these molecular properties. The differences 

between the predicted and experimental values is the residual values which are very low meaning 

the model has very significant predictive ability.  

 

                  



Table 4 show the statistical parameters and their threshold values that qualifies robustness of the 

built model and worth predictive ability for the designed compounds. Also, Y-randomization 

(c𝑅𝑝
2 = 0.8433) confirmed the sturdy and reliability of the developed model.  

Table 5 show that validity and potency of the selected molecular properties were commutated via 

Person correlation and another statistical test, this fall within threshold value of less than plus or 

minus 0.8 (< ± 0.8). This means that the properties were excellently good as it appear in the 

regression model. Variance Inflation Factor (VIF) is another strong statistical parameters 

computed for each of the descriptor, as observed in Table 5, all the values fall within the limit of 

VIF less than 10, this implies that the model properties were excellent with good correlation 

analysis [3]. VIF values above the threshold value implies that the model is not stable and not 

worth predicting the activities of a designed compounds. 

  

Table 5 is the mean effect (ME) and contribution of each of the molecular properties in the built 

model. The molecular property TDB3v has the utmost ME attribute of 2.7253, which implies that 

the descriptor contributed the maximum magnitude to the developed mathematical equation and 

significantly influence the activities of the designed compounds. 

 

Figure 3 is a plot of observed activity against predicted activity of the internal validation with a 

correlation value of 0.776 while Figure 4 is a plot of observed activity versus predicted activity of 

the external validation with a correlation value of 0.6548. These correlation values depicts that the 

model is good, reliable and sturdy. 

 

Figure 5 shows the residual plot of the activities proposed by the built model. It is obvious that all 

the values fall within the limit of ±2 which implies the proposed model have excellent predictions 

and promising anti-tuberculosis ability.  

 

Figure 6 show the William’s plot with leverage (k*)value of 0.64 and a limit of ±3. As it can be 

observed, compound with ID 35 fall outside the leverage value implies that is an influencer, as 

such compound ID 35 cannot be consider when designing theoretical compounds.  

 

                  



ME analysis is the pivoted point at which the excellent and promising compounds were designed 

[22]. Figure 7 show the backbone of the structure used in designing new compounds evolved as a 

result of the molecular property (TDB3v) with the highest ME value of 2.7253 as shown in Table 

5. The significant merit of this molecular property value is that it increase as activity increase and 

in return it augment the anti-tuberculosis activity, which made TDB3v significant contribution. 

 

Computational design of new anti-tubercular compounds via Ligand-based 

Figure 8 show the three theoretical compounds designed after the employment of the template 

above, namely; x, y, and z. Table 6 show the predicted activities by the proposed model. In order 

to validate the predicted activities of the designed compounds, the warning leverage (k∗) of 0.64 

was compared with calculated leverage generated for the compounds presented in Table 6. All the 

designed inhibitors fall below the leverage value which confirm the reliability of the predicted 

activities.  

 

Simulation analysis 

Table 7 show the docking scores of the theoretically designed inhibitors, x, y, and z with their 

respective scores of -15.56 kcal/mol, -18.58 kcal/mol, and -18.51 kcal/mol which shows their 

binding interactions. These docking scores outweigh that of the referenced compound and the 

template utilized in the designed of compounds that are respectively -13.22 kcal/mol and -12.41 

kcal/mol.  Hence, the designed inhibitors exhibited excellent anti-Tuberculosis ability. Detailed 

simulation analysis results that deeply explains theoretical designed compounds are found in Table 

7.  

 

Figures 9, 10, 11, 12, and 13 show the hydrogen bonds and hydrophobicity of the template which 

has five hydrogen bonds in the complex and two amino acids viz; Gln101 and Trp103, compound 

x has six hydrogen bonds in the complex with two amino acids viz; Gln101 and Trp103, compound 

y has a sum of seven hydrogen bonds in the complex with one amino acid, viz; Trp103, compound 

z has a sum of seven hydrogen bonds in the complex with one amino acid viz, Trp103, and the 

referenced compound has a total of three hydrogen bonds interactions in the complex respectively.  

                  



It could be infer from the above analysis that the three designed compounds have six and seven 

hydrogen bonds with the same amino acid interaction. This conspicuous observation emanate from 

the modification point in the template as shown in Figure 7 which enhanced their binding poses 

with efficient binding interactions with the target receptor.  

 

Prediction of ADME-Tox and pharmacokinetics assessment 

The Pfizer rule has been utilized to evaluate the drug likeness of potential drug candidates in term 

of bioavailability. All the Pfizer rule fall within threshold value as shown in Table 8. This implies 

that three designed inhibitors are orally active and has been proved in a previous research [28]. 

The physicochemical properties such as MW, HBA, HBD, TPSA of the designed compounds 

exhibited small polarization and elasticity as a result of their forecasted TPSA fall within the limit. 

The merit of this is that the theoretically designed compounds are excellently admirable.  

 

The lipophilicity which is basically water and octanol ratio of all the designed compounds fall 

within threshold limit which means that, in lipid environment, the compounds are very good and 

druggability. The water solubility of compounds x, y, and z with all the solubility values fall within 

the expected limit, the compounds are soluble and worth inspecting for drug evaluation and used 

as drug candidates. The kinetics assessment of designed inhibitors as shown in Table 8, could be 

useful because they penetrate human intestinal absorption and blood brain barrier. Also, these 

compounds have their permeant ability less than -2.5 cm/s, it implies that the compounds can 

penetrate the skin. Keen inspection of Table 8, it will be observed that properties such as Egan, 

Ghose, Mueggae, ans Veber which fall under drug-likeness have no violation and all their score 

values are ‘YES’ unlike the referenced compound with two violation that is ‘NO’ under Ghose 

and Mueggae rules, this suggest that the three designed compounds are excellent drug candidates 

compared to the referenced compound.  

  

Lastly, still on Table 8, medicinal chemistry parameters (PAINS, Brenk and Leadlikeness) of the 

designed compounds have their threshold value fall within limit while the template and referenced 

compounds have their limit outside the threshold value. Hence, all the three designed compounds 

have good medicinal Chemistry properties.   

                  



Figure 14 show the radar bioavailability of the designed bioactive compounds x, y and z. The 

physicochemical area is depicted by pink for a bioavailable chemical compound as previously 

reported in a research [30]. Keenly inspection of Figure 14 show that all the three designed 

compounds fall within the orally pink bioactive region which the compounds are medically 

bioactive compare to the referenced compounds that have a point outside the pink region and 

simply mean non-bioactive.  

  

                  



Conclusion 

Computational-Aided Drug Design have been successfully carried out on fourty (40) triazole 1,2,4 

derivatives in building a model with outstanding molecular properties (MATS7s, SpMin4_Bhv, 

SM1_DzZ, TDB3v and RDF70v) with anti-tuberculosis curing ability. Simulation techniques were 

employed for virtual screening and designing of inhibitors. After the molecular docking, 

compound six (6) emanated as a template because of it lowest docking score, it was then used as 

a template to design several compounds out of which three compounds; x (-15.56 kcal/mol), y (-

18.58 kcal/mol), and z (-18.51 kcal/mol) emanated as the best with docking scores lower than the 

template and the referenced compound. Lastly, these designed compounds were subjected to 

ADMET-ox prediction and pharmacokinetics assessment, all the compounds successfully passed 

the evaluation and fit-well as potential drug candidates. This research has immensely contributed 

in the 2063 African agenda to cure any life threatening disease. The compounds can be subjected 

to further clinical test such as in-vitro and in-vivo analysis. 

ABBRIVATION 

Not applicable in this section 

 

 

REFERENCES 

 

[1] W.H.O (2019) http://www.who.int/news-room/fact-sheets/detail/tuberculosis  

[2] W.H.O (2021) https://www.who.int/health-topics/tuberculosis#tab=tab_1 

[3]  Ajala, A., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2022). 2D QSAR, design, docking 

study and ADMET of some N-aryl derivatives concerning inhibitory activity against 

Alzheimer disease. Future Journal of Pharmaceutical Sciences, 8(1), 30.  https://doi.org/ 

10.1186/s43094-022-00420-w 

[4] https://patents.google.com/patent/US9376402B2/en 

                  



[5] P.S. Abideen, K. Chandrasekaran, V.A. Maheswaran, V. Kalaiselvan, Implementation of self-

reporting pharmacovigilance in anti-tubercular therapy using  knowledge based approach. 

Journal of Pharmacovigilance. 23 (2013)  20-34. https://doi.org/10.4172/2329-6887.1000101 

[6] Ajala, A., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2022). Structure-based drug design 

of novel piperazine containing hydrazone derivatives as potent Alzheimer inhibitors: 

molecular docking and drug kinetics evaluation. Brain Disorders, 7, 100041. https://doi.org/ 

10.1016/j.dscb.2022.100041 

[7]   C. W. James, DNA entanglement and the action of the DNA Topoisomerases, Cold pring 

Harbor Laboratory Press, Cold Spring Harbor, NY. (2009). 245.  

[8] Y.Y. Huang, J.Y. Deng, J. Gu, Z.P. Zhang,  A. Maxwell, L.J. Bi, Y.Y. Chen, Y.F. Zhou, Z.N. 

Yu, X.E. Zhang, The key DNA-binding residues in the Cterminal domain of Mycobacterium 

tuberculosis DNA gyrase A subunit (GyrA). Nucleic Acids Reseasch, 34 (2006) 5650–5659. 

https://doi.org/10.1093/nar/gkl695 

[9] Y. Zhang, K. Post-Martens, S. Denkin, New drug candidates and therapeutic targets  for 

tuberculosis therapy. Drug Discovery Today, 11 (2006) 21-27. 

https://doi.org/10.1016/S1359-6446(05)03626-3 

[10] B.S. Holla, M. Mahalinga, M.S. Karthikeyen, B. Poojary, P.M. Akberali, N.S. Kumari, 

Synthesis, characterization and anti-microbial activity of some substituted 1, 2, 3-triazoles. 

European Journal of Medical Chemistry, 40 (2005) 1173-1178.  

https://doi.org/10.1016/j.ejmech.2005.02.013 

[11] H.N. Hafez, H.A. Abbas,  A.R. El-Gazzar, Synthesis and evaluation of analgesic,  anti-

inflammatory and ulcerogenic activities of some triazolo- and 2- pyrazolylpyrido[2,3-

d]- pyrimidines. Acta Pharmacy, 58 (2008) 359-378. https://doi.org/10.2478/v10007-008-

0024-1 

[12] L.P. Guan,  Q.H. Jin, G.R. Tian, K.Y. Chai, Z.S. Quan, Synthesis of some quinoline-2 (1H)-

one and 1, 2, 4-triazolo[4, 3 -a] quinoline derivatives as potent anticonvulsants. Journal of 

Pharmarcy and  Science, 10 (2007) 254-262. https://doi.org/10.1021/jm801343r 

[13] R. Gujjar, A. Marwaha, J. White, L. White, S. Creason, D.M. Shackleford, J. Baldwin, W.N. 

Charman, Identification of a metabolically stable triazolopyrimidine-based  dihydroorotate 

dehydrogenase inhibitor with activity in mice. Journal of Medicinal  Chemistry, 52 (2009) 

1864-1872. https://doi.org/10.1021/jm801343r 

                  



[14] Abduljelil, A., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2023). Virtual screening, 

molecular docking simulation and ADMET prediction of some selected natural products as 

potential inhibitors of NLRP3 inflammasomes as drug candidates for Alzheimer 

disease. Biocatalysis and Agricultural Biotechnology, 102615. https://doi.org/ 

10.1016/j.bcab.2023.102615 

[15] Y.S. Mary, P.B. Miniyar, Y.S. Mary, K.S. Resmi, C.Y. Panicker, S. Armaković, S.J. 

Armaković, R. Thomas, B. Sureshkumar, Synthesis and spectroscopic study of three new 

oxadiazole derivatives with detailed computational evaluation of their reactivity and 

pharmaceutical potential, Journal of Molecular Structure (2018),  

       : 10.1016/j.molstruc.2018.07.026. 

[16] S. Beegum, Y.S. Mary, Y.S. Mary, R. Thomas, S. Armakovic, S.J. Armakovic, J. Zitko, M. 

Dolezal, C. Van Alsenoy, Exploring the detailed spectroscopic characteristics, chemical and 

biological activity of two cyanopyrazine-2-carboxamide derivatives using experimental and 

theoretical tools, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 

224 (2020) 117414 https://doi.org/10.1016/j.saa.2019.117414 

[17] Ajala, A., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2023). QSAR, simulation 

techniques, and ADMET/pharmacokinetics assessment of a set of compounds that target 

MAO-B as anti-Alzheimer agent. Future Journal of Pharmaceutical Sciences, 9(1), 1-20.. 

https://doi.org/ 10.1186/s43094-022-00452-2 

[18] Ajala, A., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2022). Computational and 

pharmacokinetics studies of 1, 3-dimethylbenzimidazolinone analogues of new proposed 

agent against Alzheimer's disease. Beni-Suef University Journal of Basic and Applied 

Sciences, 11(1), 1-19.. https://doi.org/ 10.1186/s43088-022-00231-1 

[19] K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, R.N. Das, Some case studies on 

application of “rm2” metrics for judging quality of quantitative structure–activity relationship 

predictions: emphasis on scaling of response data, J. Comput. Chem. 34 (2013) 1071–1082. 

QSAR models-strategies and importance, Int. J. Drug Des. Discov. 3 (2011) 511–519. 

https://doi.org/10.1002/jcc.23231 

[20] Ajala, A., Uzairu, A., Shallangwa, G. A., & Stephen, A. E. (2022). QSAR, Molecular 

Docking, Dynamic Simulation and Kinetic Study of Monoamine Oxidase B Inhibitors as 

                  



Anti-Alzheimer Agent. Chemistry Africa, 1-14. https://doi.org/ 10.1007/s42250-022-

00561-8 

[21] A. Tropsha, P. Gramatica, V.K. Gombar, The importance of being earnest: validation is the 

absolute essential for successful application and interpretation of QSPR models, Mol. Inform. 

22 (2003) 69–77. https://doi.org/10.1002/qsar.200390007 

[22] Ajala, A., Uzairu, A., & Suleiman, I. O. (2016). Chemometric study of some α, β-unsaturated 

ketone as potential antifungal agents using density function theory and GFA (ATCC 10231 

and NCIM 3446 cell line). Cogent Chemistry, 2(1), 1175073. 

https://doi.org/10.1080/23312009.2016.1175073 

 [23] J. Piton, S. Petrella, M. Delarue, G. Andre´-Leroux, V. Jarlier , A. Aubry, C. Mayer, 

Structural Insights into the Quinolone Resistance Mechanism of Mycobacterium tuberculosis 

DNA Gyrase, PLoS ONE 5 (2010), e12245. doi:10.1371/journal.pone.0012245. 

[24] https://www.rcsb.org/structure/3IFZ 

[25] O. Adedirin, A. Uzairu, G. A. Shallangwa, S. E. Abechi, A novel QSAR model for designing, 

evaluating, and predicting the anti-MES activity of new 1H-pyrazole-5-carboxylic acid 

derivatives. Journal of the Turkish Chemical Society, 4 (2017). 739–774. 

https://doi.org/10.18596/jotcsa.304584  

[26] M.T Ibrahim, A Uzairu, G.A Shallangwa, S Uba, In-silico activity prediction and docking 

studies of some 2, 9-disubstituted 8-phenylthio/ phenylsulfinyl-9 h-purine derivatives as 

Anti-proliferative agents. Heliyon 6(2020) e03158. 

https://doi.org/10.1016/j.heliyon.2020.e03158  

[27] N.B. Patel, I.H. Khan, S.D. Rajani, Pharmacological evaluation and  characterizations of 

newly synthesized 1,2,4-triazoles. European Journal of Medicinal Chemistry. 45 (2010). 

https://doi.org/10.1016/j.ejmech.2010.06.031  

[28] C. A. Lipinski, Rule of five in 2015 and beyond: Target and ligand structural limitations, 

ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery 

Reviews, 101  (2016) 34–41. https://doi.org/10.1016/j.addr.2016.04.029   

[29] R. Mannhold, G. I. Poda, C. Ostermann, I.V. Tetko,  Calculation of molecular lipophilicity: 

State-of-the-art and comparison of log P methods on more than 96,000 compounds. Journal 

of Pharmaceutical Sciences, 98 (2009). 861–893. https://doi.org/10.1002/jps.21494 

[30] A. Daina, O. Michielin, V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, 

                  



drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7 

(2017).  1–13. https://doi.org/10.1038/srep42717 

 

 

Credit Author Statement 

Stephen E. Abechi, Ajala Abduljelil, Abatyough Terungwa Michael and Otaru Habiba 

Asipita, and Mohamed El Fadil did the conception and design of the work.  Stephen E. Abechi, 

Ajala Abduljelil, Abatyough Terungwa Michael and Otaru Habiba the acquisition and 

analysis of the data. Stephen E. Abechi, Ajala Abdulelil, Abatyough Terungwa Michael and 

Otaru Habiba interpreted the data. Ajala Abduljelil drafted the manuscript. Ajala Abduljelil 

substantively revised the manuscript. All authors read and approved the final manuscript 

 

Declarations 

 

Ethics approval and consent to participate 

Not applicable 

 

Consent for publication 

Not applicable  

 

Availability of data and Materials 

Not applicable 

  

                  



Funding  

Not applicable  

Acknowledgements 

The authors gratefully acknowledged the technical effort of Dr. Abdulfatai Usman, Mr Stephen 

Ejeh and Dr Samuel Adawara all of chemistry department, Ahmadu Bello University, Zaria. 

 

 

Declaration-of-competing-interests 

The authors declare that they have no competing interests  

 

 

 

                  


