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ABSTRACT 
 

In this paper, we propose a mathematical model 
of malaria disease which involves Fractional 
Differential Equations (FDEs) introducing the 
effect of drug therapy and treatment rates. The 

effective reproduction number ( effR ) is obtained 

and computed using next generation method. The 

effR was analytically evaluated for its sensitivity in 

the model dynamics. It was proved that effR is a 

strict decreasing function of drug therapy and 
treatment parameters.   
 

(Keywords: effective reproductive number, malaria 
disease, drug therapy, treatment, sensitivity) 

 

 
INTRODUCTION 
 
In biomathematics of epidemiological models, one 
of the most interesting parts is the behavior of 
basic reproduction number. The basic 

reproduction number denoted by 0R  is the 

expected number of secondary infections 
produced when one infected individual is 
introduced into a host population where everyone 

is susceptible. According to Benya (2007), 0R  is 

the threshold quantity for many epidemiology 
models.  
 
For a single infected individual or compartment 

,0R is the product of the infection rate on mean 

duration of the infection. This implies that if  is 

the death rate for a host population or individual, 

then the life expectancy is /1  and  is the 

death rate due to infection, the mean duration of 

infection is ./1   Similarly, if  is the recovery 

rate, the period of recovery will be given by ./1   

In Ashezua, et al. (2015), the author reported that 
there are two commonly used methods for 
computing the basic reproduction number in 
Biomathematics. Ashezua (2017), pointed out 
that the first method is associated with models 
involving ordinary differential equations and the 
second method deals with infection-age and age-
structured population models.  
 
The authors of Abdulrahman, et al. (2013) and 
Abdulrahman (2014) ascertained that if 

,10 R then on average, an infected individual 

produces less than one newly infected individual 
over the course of its infection period. In this 
case, the infection may die out in the long run. 

Conversely, if ,10 R each infected individual 

produces, on average, more than one new 
infection, the infection will be able to spread in a 

population. A large value of 0R may indicate the 

possibility of a major epidemic. Similarly, the 

effective reproduction number,
effR represents the 

average number of secondary cases generated 
by infected cell or individual if introduced into a 
susceptible host cell or population where control 
strategies are used (Hoppensteadt, et al., 1974; 
Huang, et al., 2012; Jinliang, et al., 2015; Benya, 
2008; Castillo-Chavez and Bruer, 2001; Chowell, 
et al., 2004; Chitnis, et al., 2008). 
 
The mathematical accepted method for finding 

0R that reflect its biological meaning is the next 

generation operator approach described by 
Diekmann, et al. (1990) and subsequently 
analyzed in Driessche and Watmough (2002). 
The basic reproduction number is obtained by 
dividing the whole population into n  

compartments in which there are nm   infected 
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compartments. Let mixi ,...,3,2,1, = be the 

numbers of infected individuals in the 
thi infected 

compartments at time .t The largest eigenvalue or 

spectral radius of 
1−FV  is the basic reproduction 

number of the 

model. ( )  ( )  ,
1001 −− = iiii xEVxEFFV where iF

is the rate of appearance of new infected in 

compartment ,i  iV is the transfer of infections 

from one compartment i to another and 
0E is the 

disease-free equilibrium (Somma, et al., 2017).  
 
The basic reproduction number is normally 
affected by several factors including the duration 
of the infectivity of the affected patients, the 
infectiousness of the organisms, and the number 
of susceptible people which are the population 
that the affected patients get in contact with 
(Abah, et al., 2015). However, on the other hand 
malaria is the third leading cause of death most 
especially for children under five years worldwide, 
after pneumonia and diarrheal disease.  
 
Malaria disease is the second leading cause of 
death from infectious diseases in Africa, after 
HIV/AIDS. Almost 1 out of 5 deaths of children 
under 5 in Africa are due to malaria. Malaria 
disease is caused by Plasmodium parasites. The 
parasites are spread to people through the bites 
of an infected female Anopheles mosquito known 
as malaria vector. There are two forms of vector 
control insecticide with treated mosquito nets and 
indoor residual spraying is effective in a wide 
range to prevent the disease. Anti-malarial 
medicines can also be used to prevent malaria. 
According World Health Organization (WHO, 
2016), malaria has been recognized as a disease 
of poverty with vulnerable groups facing several 
barriers to access anti-malarial interventions. 
 
In this work, we present a deterministic 
mathematical model of malaria disease dynamics 
which is a system of Fractional Differential 
Equations (FDE) to investigate the behavior of 
effective reproduction number on drug therapy 
and treatment rate. We consider the probability of 
receiving treatment p  at the time of acquiring 

infection rather than the time of infection, as an 
alternative way of capturing the proportion of 
infections that are treated. The total time to move 
from being infectious to becoming susceptible 

again is )( +q  and hence the populations who 

receive drug therapy with probability p  do so at 

a rate of )/(1 + qp .  

 
The populations that are infectious but remain 
untreated recovered naturally at the natural 

recovery rate ( )( )./1 p−
 

However, as pointed 

out in (Tatem and Smith, 2010; Driessche and 
Watmogh, 20002) an infection with malaria is a 
lifelong disease since the infected individual 
harbored the virus in the blood for at least more 
than a year. With malaria, infected individuals 
return to the susceptible class on recovery 
because the disease confers no immunity against 
re-infection. Some fractions of susceptible 
proportion, latent proportion and symptomatic 
proportion are placed on a regular time to seek 

drug therapy at an equal rate of 3 . This is 

simply because 97 percent of Nigerians are 
infected with malaria virus from mosquito bites. 
And we assume that all infected individuals who 

recovered naturally at the rate ( )( ),/1 p−  

symptomatic individuals that do not access drug 

therapy and treatment at a rate 0/1 
 

and those 

who only take drug therapy may enter latent 
compartment and can be considered as latently 
infected individuals. We allow the reproduction 
rate of malaria virus from the mosquitoes to enter 
the model. Therefore, susceptible individuals are 
allowed to be either under drug therapy or latent 
with certain probabilities. 
 
 
MATERIAL AND METHODS 
 
Formulation of the Model Equations 
 
We formulate a mathematical model for malaria 
disease where the population is partitioned into 

six compartments of the Susceptible );(tS  

Latent );(tL  Symptomatic );(tB  Infected );(tI  

Drug therapy );(tQ  while the sixth class is the 

Treatment ).(tT Patients may seek drug therapy 

when symptoms have manifested as well as at 
the infectious stage, and a person may be re-
infected once susceptible again.  
 
The natural recovery period is assumed to be 
longer than the drug recovery period and the time 
to infectiousness. Probability of receiving 
treatment p is applied at the time of acquiring 
infection rather than during the infection. The 
classes susceptible, latent and

 
symptomatic seek 
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drug therapy at a regular rate 3 . After the drug 

therapy, individual may move to either 
susceptible, latent or treatment class depending 
on whether the malaria viruses are cleared, 
hidden or persist. Time to seek treatment after 
drug therapy is not equal time to seek treatment 
during infection; becoming susceptible again is 
the combined effects of treatment,

 
drug therapy 

and
 

recovery rate
 

per infected individual. 
Reproduction rate of malaria virus and death 
removal rate are not equal.  
 
Disease induced death rate is applicable to only 
infected class. Probability of receiving treatment p 

is applied during the infection, and those who 

recovered naturally without drug and treatment 

moved into latent class. We assumed the malaria 
virus is not cleared in their body and the influx of 

malaria virus reproduction at a rate  ,  natural 

death is applicable to all the compartments at a 

rate 0 , disease induce death only to infectious 

class at a rate 1  and latent rate 0  relative to 

infection by symptomatic class. The 

population N is compartmentalized into the 

proportions of susceptible, latent, symptomatic, 
infected, drug therapy, and treatment class. 

 
 

 
                                                          Figure 1: Model Flowchart. 
  
 
Model Equations 
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The model is defined in the subset  ) ,0D
 
of

 
,6

+
 
where:

 

( ) 1,1,,,,,0:,,,,, 6 +++++= + TQIBLSTQIBLSTQIBLSD
 

 
 
Table 1: Definition of variables and parameter are 

represented as follows 
 

Symbols Description 

)(tS  Susceptible individuals at time t  

)(tL
 

Latent period at time t  

)(tB
 

Symptomatic individuals at time t  

)(tI
 

Infected period at time t  

)(tQ  Drug therapy period at time t  

)(tT
 

Treatment period at time t  

0  Period of susceptible 

1  
Period of latent  

2
 

Time of infectiousness 

 3  Time to seek drug therapy 

4
 

Latent period after drug therapy 

0  
Time to seek treatment after drug 
therapy   


 

Time to seek treatment 


 

Reproduction rate of malaria virus
  

0  Natural death rate 

1  
Death rate of Infected 


 

Treatment rate 

0  
Latent rate relative to infection by 
symptomatic class 


 Rate of recovery 


 Susceptible proportions that seek 

drug therapy at 3  

  Latent proportions that seek drug 

therapy at 3  

  Symptomatic proportions that seek 

drug therapy at 3  

q  Drug recovery period 

  Natural recovery period 

p  Probability of treatment 

N  Population size 

)1( p−  Rate of moving from infected to latent 
when there is no drug therapy and 
treatment 

 
  
The Effective Reproduction Number 
 
We now compute the disease-free equilibrium 
state of the model. We begin this by setting the 
left hand sides of equations (1) to (7) to zero 
and get the disease-free equilibrium state as 
follows. The disease-free equilibrium state, 

( ).,,0,0,0, 0000 TQSE =  

 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –105– 
http://www.akamaiuniversity.us/PJST.htm                                                Volume 21.  Number 1.  May 2020 (Spring) 

Where, 
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Remark 1: For SEIR models, the rate of appearance of new infections is given by the new infection terms 
in the latent compartment (Heffeman, 2005; Ameh, 2009; Hsu, 2005). From the equations (1) to (7) of the 

model, we have the following: The vector )(xF of the rates of new infections in compartments )(tL , )(tB  

and )(tI is given by: 
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Also, the remaining transfer terms in compartments BL,  and I is given by Equation (12). 
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The matrix of partial derivatives of )(xF at DFE State 

( )0000 ,,0,0,0, TQSEx ==  is given by: 
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And the matrix of partial derivatives of )(xV at DFE State ( )0000 ,,0,0,0, TQSEx ==  is: 
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It follows that the effective reproduction number effR  is given by Equation (16). 
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Theorem 1: 
effR  is a strictly decreasing function of ).1,0(,,,,3 p  

 

Proof: The partial derivative of 
effR  with respect to  ,,,3 and p is given by (18) to (22). 
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(22) 

 
 
RESULTS AND DISCUSSION 

Therefore, effR  is a strictly decreasing function 

of  ,,,3 and p as shown in Equations (18) 

to (22). The results we obtained by using this 
technique show that the malaria disease can be 

eliminated if effR
 

is below unity. From the 

analysis of the model, the study suggests a 
proportionate combination of drug therapy and 
treatment for each infected individual as a better 
control strategy. 
  
 
 

CONCLUSION 

The effective reproduction number ( effR ) 

represents the average number of secondary 
cases generated by an infected cell or individual 
if introduced into a susceptible host cell or 
population where control strategies are used. In 
the analysis, the results show that effective 
reproduction number is a decreasing function of 
both drug therapy and treatment rates. We 
observed that the optimal control of malaria 
disease is the availability of anti-malaria known 
as drug therapy and its clinical treatment.
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