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ABSTRACT 
Programming is a core skill in computing. Much of computing 
education and work in industry and research has programming 
skill is an important factor. Human subjects have varying levels 
of programming experience which affects their output. The 
inability to quantify programming skill threatens the validity of 
research results.  Previous research has attempted to model 
programming skill and experience by finding a correlation 
between programmer characteristics and number of correct 
answers in a set of programming tasks. However, the model was 
not validated. This study is therefore designed to model the skill 
of programmers and to validate the model using experimental 
proof approach. 
Undergraduate students were presented with programming tasks 
and a questionnaire to elicit programming experience  and 
demographic data. Using Stepwise regression,  a linear model was  
extracted  which showed two variables: lengthSchoolJava and 
schoolHours6Months contributed most to the number of correct 
answers. Furthermore, factor analysis extracted two factors: Java 
knowledge and Practical Java experience, that explained the 
number of correct answers. For the future direction, we want to 
analyse programming error logs to improve our quality metric 
and confirm the extracted model by collecting more qualitative 
data. 
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•General and reference~Cross-computing tools and 
techniques~Empirical studies  
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1 RESEARCH MOTIVATION 
The skill of subjects in a software engineering experiment is an 
important confounding element which still has no standard means 
of control [1] [2]. Programming skill is defined as “the ability to  

 
use one’s knowledge effectively and readily in execution or 
performance of programming tasks” [3]. There is as yet no method 
for measuring programming skill independent of programming 
language. In empirical software engineering research, the effect of 
the skill of subjects has over time been inconsistently accounted 
for [2]. Many researchers have either ignored it or used proxy 
measurements such as years of experience. None the less, 
programming skill remains an important confounding factor to be 
in empirical software engineering [1] [4]. Not accounting for the 
skill of the subjects, impacts negatively on the external validity of 
such research [2].   
Further, several software effort and quality measurement models 
historically suffer from inaccuracy. Despite years of research [5], 
the best solutions still combine two or more methods or, revert to 
expert judgement. The human element is a possible suspect in the 
failure of these models till date. 
Developing a means of measuring the skill of programmers is 
hence an important research topic; the success of which, has far 
reaching benefits on software engineering teaching, research and 
practice.  

2  LITERATURE REVIEW 
Research into measurement of programming skill is sparse. Two 
notable works - [2] and [3] describe an empirical approach using 
students and professionals. Similar approaches are used in both 
experiments. A questionnaire is used to collect demographic data 
and data relating to experience with programming. This data is 
then correlated to results from programming tasks presented to 
the subjects. After applying regression and factor analysis to the 
data, Siegmund [2] proposed a 5-factor model for measuring skill, 
while Bergersen developed a tool that can be used to measure the 
programming skill of JAVA programmers. These works are the 
most influential for this research. [6] and [7], further demonstrate 
the possibility of measuring and modeling skill by observing and 
recording specific behaviors.  
 
2.1 Theoretical Background 
This work seeks to conceptualize programming skill by relating 
observable (and measurable) programmer characteristics with the 
quality of work (program artefact) produced. This is based on the 
following theories: 

1. The Power Law of Skill Acquisition Theory: This 
law states that as practice increases, numbers of errors 
and time to completion reduce. [8] 
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2. Theory of Self-efficacy: This is a self-reported 
proficiency. The literature is replete with assertions to 
the fact that self-efficacy correlates with skill [1] [2] [3].  

3. Theory of Measurement: According to [9], 
“measurement is the assignment of numerals to objects 
events based on rules”. The rules, mathematical 
properties and statistical operations only need to be 
made explicit. 

2.2 Conceptual Model 
The proposal is to apply the cause-effect model. We postulate that 
software quality is ‘caused’ by programmer(s) skill, which itself is 
‘caused’ by innate programmer characteristics such as previous 
knowledge and experience. Our proposal fits the criteria for 
establishing a cause-effect model as detailed in [10]. 

 
Figure 1: Cause-Effect Diagram for programming skill 

3  METHODOLOGY 

1. Systematic Literature Review: comprehensive search of 
literature in the programming skill measurement domain to 
discover the state of the art within the body of research. 

2. Questionnaires: Short questionnaires are used to collect 
demographic and historical data about individual subjects’ 
knowledge and experience of programming. 

3. Controlled Experiment: Subjects are given a set of 
representative programming tasks to solve. Tasks includes 
timed coding and comprehension tasks. Source codes are 
saved on disk. Comprehension results are recorded in the 
printed task sheet. Subjects are monitored and data collated 
at the end of the experiment. 

4. Analysis: Questionnaire is coded and Tasks are graded 
(Coding tasks: 0- code does not run, 1- code runs with bugs, 
2- code runs without bugs and comprehension tasks: 0 - 
incorrect,1- correct). Data collected is analyzed to extract 
correlation models. Predictive variables will be extracted 
from this model and then plugged into a predictive model 
such a multiple linear regression and Bayesian network. 
 

4   RESEARCH PROGRESS AND EXPECTED 
CONTRIBUTIONS 

This work has established some relationships between observable 
characteristics of programmers and code produced. Codes were 
graded based correctness and this correlated with the subject’s 
length of training and recent practical experience. These two 
variables were highlighted in the result of a stepwise linear 
regression which produced the model:  

SumCorrect = lengthSchoolJava * .822 + schoolHours6Months * .489  

A two-factor model was also extracted consisting of the following 
factors: knowledge of JAVA and practical JAVA experience.  

4.1 Expected Contribution to Knowledge 
Understanding what constitutes programming skill is important 
for several aspects of computing. It will contribute to improved 
teaching methods for computer programming, improved 
empirical software engineering research, potentially improve 
software estimation. 
 
4.2 Expected Benefit from Doctoral Consortium 
Some interim results were obtained from my initial data collection 
and analysis. Prosed next step is to collect further data to validate 
the interim model. We are also propose including programming 
error quotient and McCabe’s complexity as metrics. At the 
doctoral consortium, I hope to receive comments around the 
methodology and design of the study. 
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