
A Metrics-Based Model for Programming Skill
Oluwatoyin Adelakun

 Department of Computer Science
 University of Ibadan

Ibadan, Nigeria
 toyin@sure-impact.com

ABSTRACT
Programming is a core skill in computing. Much of computing
education and work in industry and research has programming
skill is an important factor. Human subjects have varying levels
of programming experience which affects their output. The
inability to quantify programming skill threatens the validity of
research results. Previous research has attempted to model
programming skill and experience by finding a correlation
between programmer characteristics and number of correct
answers in a set of programming tasks. However, the model was
not validated. This study is therefore designed to model the skill
of programmers and to validate the model using experimental
proof approach.
Undergraduate students were presented with programming tasks
and a questionnaire to elicit programming experience and
demographic data. Using Stepwise regression, a linear model was
extracted which showed two variables: lengthSchoolJava and
schoolHours6Months contributed most to the number of correct
answers. Furthermore, factor analysis extracted two factors: Java
knowledge and Practical Java experience, that explained the
number of correct answers. For the future direction, we want to
analyse programming error logs to improve our quality metric
and confirm the extracted model by collecting more qualitative
data.

CCS CONCEPTS
•General and reference~Cross-computing tools and
techniques~Empirical studies

KEYWORDS
Programming Skill; Measurement; Metrics; Self-efficacy; Cause-
effect.

1 RESEARCH MOTIVATION
The skill of subjects in a software engineering experiment is an
important confounding element which still has no standard means
of control [1] [2]. Programming skill is defined as “the ability to

use one’s knowledge effectively and readily in execution or
performance of programming tasks” [3]. There is as yet no method
for measuring programming skill independent of programming
language. In empirical software engineering research, the effect of
the skill of subjects has over time been inconsistently accounted
for [2]. Many researchers have either ignored it or used proxy
measurements such as years of experience. None the less,
programming skill remains an important confounding factor to be
in empirical software engineering [1] [4]. Not accounting for the
skill of the subjects, impacts negatively on the external validity of
such research [2].
Further, several software effort and quality measurement models
historically suffer from inaccuracy. Despite years of research [5],
the best solutions still combine two or more methods or, revert to
expert judgement. The human element is a possible suspect in the
failure of these models till date.
Developing a means of measuring the skill of programmers is
hence an important research topic; the success of which, has far
reaching benefits on software engineering teaching, research and
practice.

2 LITERATURE REVIEW
Research into measurement of programming skill is sparse. Two
notable works - [2] and [3] describe an empirical approach using
students and professionals. Similar approaches are used in both
experiments. A questionnaire is used to collect demographic data
and data relating to experience with programming. This data is
then correlated to results from programming tasks presented to
the subjects. After applying regression and factor analysis to the
data, Siegmund [2] proposed a 5-factor model for measuring skill,
while Bergersen developed a tool that can be used to measure the
programming skill of JAVA programmers. These works are the
most influential for this research. [6] and [7], further demonstrate
the possibility of measuring and modeling skill by observing and
recording specific behaviors.

2.1 Theoretical Background
This work seeks to conceptualize programming skill by relating
observable (and measurable) programmer characteristics with the
quality of work (program artefact) produced. This is based on the
following theories:

1. The Power Law of Skill Acquisition Theory: This
law states that as practice increases, numbers of errors
and time to completion reduce. [8]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
ICER '20, August 10–12, 2020, Virtual Event, New Zealand
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-7092-9/20/08
https://doi.org/10.1145/3372782.3407106

Doctoral Consortium Abstract ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

338

mailto:toyi

2. Theory of Self-efficacy: This is a self-reported
proficiency. The literature is replete with assertions to
the fact that self-efficacy correlates with skill [1] [2] [3].

3. Theory of Measurement: According to [9],
“measurement is the assignment of numerals to objects
events based on rules”. The rules, mathematical
properties and statistical operations only need to be
made explicit.

2.2 Conceptual Model
The proposal is to apply the cause-effect model. We postulate that
software quality is ‘caused’ by programmer(s) skill, which itself is
‘caused’ by innate programmer characteristics such as previous
knowledge and experience. Our proposal fits the criteria for
establishing a cause-effect model as detailed in [10].

Figure 1: Cause-Effect Diagram for programming skill

3 METHODOLOGY

1. Systematic Literature Review: comprehensive search of
literature in the programming skill measurement domain to
discover the state of the art within the body of research.

2. Questionnaires: Short questionnaires are used to collect
demographic and historical data about individual subjects’
knowledge and experience of programming.

3. Controlled Experiment: Subjects are given a set of
representative programming tasks to solve. Tasks includes
timed coding and comprehension tasks. Source codes are
saved on disk. Comprehension results are recorded in the
printed task sheet. Subjects are monitored and data collated
at the end of the experiment.

4. Analysis: Questionnaire is coded and Tasks are graded
(Coding tasks: 0- code does not run, 1- code runs with bugs,
2- code runs without bugs and comprehension tasks: 0 -
incorrect,1- correct). Data collected is analyzed to extract
correlation models. Predictive variables will be extracted
from this model and then plugged into a predictive model
such a multiple linear regression and Bayesian network.

4 RESEARCH PROGRESS AND EXPECTED
CONTRIBUTIONS

This work has established some relationships between observable
characteristics of programmers and code produced. Codes were
graded based correctness and this correlated with the subject’s
length of training and recent practical experience. These two
variables were highlighted in the result of a stepwise linear
regression which produced the model:

SumCorrect = lengthSchoolJava * .822 + schoolHours6Months * .489

A two-factor model was also extracted consisting of the following
factors: knowledge of JAVA and practical JAVA experience.

4.1 Expected Contribution to Knowledge
Understanding what constitutes programming skill is important
for several aspects of computing. It will contribute to improved
teaching methods for computer programming, improved
empirical software engineering research, potentially improve
software estimation.

4.2 Expected Benefit from Doctoral Consortium
Some interim results were obtained from my initial data collection
and analysis. Prosed next step is to collect further data to validate
the interim model. We are also propose including programming
error quotient and McCabe’s complexity as metrics. At the
doctoral consortium, I hope to receive comments around the
methodology and design of the study.

REFERENCES
[1] S. Kleinschmager and S. Hanenberg. 2011. How to Rate Programming Skills

in Programming Experiments : A Preliminary , Exploratory Study based on
University Marks, Proceedings of the 3rd ACM SIGPLAN, pp. 15-24.

[2] J. Siegmund, C. Kastner, L. Jorg, S. Apel and S. Hanenberg. 2014. Measuring
and Modeling Programming Experience. Journal of Empirical. Software
Engineering.

[3] G. Bergersen. 2014. Measuring Programming Skill: Construction and
validation of an Instrument for evaluating Java Developers. University of
Oslo.

[4] J. Carver, L. Hochstein and J. Oslin. 2009. Identifying Programmer Ability
Using Peer Evaluation : An Exploratory Study. OOPSLA.

[5] J. Zivadinovic, Z. Medic, D. Maksimovic, A. Damnjanovic and S. Vujcic. 2011.
Methods of Effort Estimation in Software. Int. Symp. Eng. Manag. Compet.
2011, p. 417–422.

[6] C. Abuah, D. Schilder, M. Sherman and F. Martin. 2018. The Tablet Game: An
Embedded Assessment For Measuring Students' Programming Skill In App
Inventor. Journal of Computing in Schools and Colleges, vol. 33, no. 6, pp. 9-
21.

[7] A. E. Tew and M. Guzdial. 2011. The FCS1: A Language Independent
Assessment of CS1. In Proceedings of SIGCSE, Dallas.

[8] C. Speelman and K. Kirsner. 2005. Skill Acquisition: History, questions, and
theories. In Beyond the Learning Curve: The construction of mind, Oxford
University Press Online, 2005, pp. pp.27-66.

[9] S. S. Stevens. 1946. On the theory of Scales of Measurement. SCIENCE, vol.
103, no. 2684, pp. 677 -680.

[10] S. Khan. 2011. "Software Quality Metrics Overview," in Metrics and Models
in Software Quality Engineering, Boston, Addison-Wesley Longman
Publishing, p. 85–126..

Doctoral Consortium Abstract ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

339

