BHU Digital Repository

Synthesis, characterization, and theoretical investigation of 4-chloro-6(phenylamino)- 1,3,5-triazin-2-yl)asmino-4- (2,4-dichlorophenyl)thiazol-5-yl-diazenyl) phenyl as potential SARS-CoV-2 agent

Show simple item record

dc.contributor.author ISHEGBE, Joyce
dc.date.accessioned 2024-06-17T15:43:28Z
dc.date.available 2024-06-17T15:43:28Z
dc.date.issued 2021
dc.identifier.citation Synthesis, characterization, and theoretical investigation of 4-chloro-6(phenylamino)- 1,3,5-triazin-2-yl)asmino-4- (2,4-dichlorophenyl)thiazol-5-yl-diazenyl) phenyl as potential SARS-CoV-2 agent. Ededet A. Eno, Hitler Louis*, Tomsmith O. Unimuke, ThankGod C. Egemonye, Stephen A. Adalikwu, John A. Agwupuye, Diana O. Odey, Abu Solomon Abu, Ishegbe J. Eko, Chukwudubem E. Ifeatu and Tabe N. Ntui en_US
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/2068
dc.description.abstract The synthesis of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)amino-4-(2,4 dichlorophenyl)thiazol-5-yl-diazenyl)phenyl is reported in this work with a detailed structural and molecular docking study on two SARS-COV-2 proteins: 3TNT and 6LU7. The studied compound has been synthesized by the condensation of cyanuric chloride with aniline and characterized with various spectroscopic techniques. The experimentally obtained spectroscopic data has been compared with theoretical calculated results achieved using high-level density functional theory (DFT) method. Stability, nature of bonding, and reactivity of the studied compound was evaluated at DFT/ B3LYP/6-31 + (d) level of theory. Hyper-conjugative interaction persisting within the molecules which accounts for the bio-activity of the compound was evaluated from natural bond orbital (NBO) analysis. Adsorption, Distribution, Metabolism, Excretionand Toxicity (ADMET) properties of the experimentally synthesized compound was studied to evaluate the pharmacological as well as in silico molecular docking against SARS-CoV-2 receptors. The molecular docking result revealed that the investigated compound exhibited binding affinity of −9.3 and −8.8 for protein 3TNT and 6LU7 respectively. In conclusion, protein 3TNT with the best binding affinity for the ligand is the most suitable for treatment of SARS-CoV-2. en_US
dc.language.iso en en_US
dc.publisher PHYSICAL SCIENCE REVIEWS en_US
dc.subject ADMET; DFT; docking; synthesis; thiazole. en_US
dc.title Synthesis, characterization, and theoretical investigation of 4-chloro-6(phenylamino)- 1,3,5-triazin-2-yl)asmino-4- (2,4-dichlorophenyl)thiazol-5-yl-diazenyl) phenyl as potential SARS-CoV-2 agent en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search BHUDR


Advanced Search

Browse

My Account